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ABSTRACT 
 

Small, generally low-cost sensors, that are deployed in unsupervised networks (or remote 
locations such as the ocean) are becoming more and more important across RIs and across 
domain. These kinds of sensors generally come equipped with data/signal processing capabilities 
that are generally stored in a microcontroller unit accompanying the sensing unit itself. This 
deliverable aims to sum up what are the main criticalities, issues and guidelines when applying 
these kinds of sensors in the field. Different applications and different sensors are examined in the 
deliverable ranging from low cost air pollution wireless sensor networks up to oceanic automated 
profilers. The result of such a comparison exercise is the highlighting of two main criticalities for 
which recommendations are provided: 

1. Calibration of the sensors 
2. Management of communications between the remote sensor and the user 

Many sensors with embedded capabilities, especially low-cost ones, output data that must be 
carefully treated to have an effective value for the user. The deliverable shows, therefore, what 
are the best venues and methodologies to analyze these kinds of data and what are the pitfalls in 
the calibration procedures. 

Many of the described sensors are often deployed in remote or unsupervised location and 
therefore it is of utmost importance to correctly approach the networking and communication 
capabilities to embed on the sensing platform. Depending on the amount of data produced and 
the type of sensor, this deliverable offers specific guidelines to manage this aspect. 

Overall D1.6 reports the experience of CNR/ANAEE and partners (IFREMER, PLOCAN, CNRS, 
University of Bremen, CEA) developed within ENVRIPLUS with sensor embedded processing 
practices and gives a reference guide for any RI that wants to introduce this practice into its field 
measurements.  
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PROJECT SUMMARY  
 

ENVRIplus is a Horizon 2020 project bringing together Environmental and Earth System Research 
Infrastructures, projects and networks together with technical specialist partners to create a more 
coherent, interdisciplinary and interoperable cluster of Environmental Research Infrastructures 
across Europe. It is driven by three overarching goals: 1) promoting cross-fertilization between 
infrastructures, 2) implementing innovative concepts and devices across RIs, and 3) facilitating 
research and innovation in the field of environment for an increasing number of users outside the 
RIs.  

ENVRIplus aligns its activities to a core strategic plan where sharing multi-disciplinary expertise 
will be most effective. The project aims to improve Earth observation monitoring systems and 
strategies, including actions to improve harmonization and innovation, and generate common 
solutions to many shared information technology and data related challenges. It also seeks to 
harmonize policies for access and provide strategies for knowledge transfer amongst RIs. 
ENVRIplus develops guidelines to enhance transdisciplinary use of data and data-products 
supported by applied use-cases involving RIs from different domains. The project coordinates 
actions to improve communication and cooperation, addressing Environmental RIs at all levels, 
from management to end-users, implementing RI-staff exchange programs, generating material 
for RI personnel, and proposing common strategic developments and actions for enhancing 
services to users and evaluating the socio-economic impacts.  

ENVRIplus is expected to facilitate structuration and improve quality of services offered both 
within single RIs and at the pan-RI level. It promotes efficient and multi-disciplinary research 
offering new opportunities to users, new tools to RI managers and new communication strategies 
for environmental RI communities. The resulting solutions, services and other project outcomes 
are made available to all environmental RI initiatives, thus contributing to the development of a 
coherent European RI ecosystem.  
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RESULTS AND RECCOMENDATION FROM THE COMPARISON EXERCISE 
OF SENSOR EMBEDDED PROCESSING PRACTICES  

 

1. THE LOW-COST SENSORS REVOLUTION 
 

With the evolution in the last years of programmable low-cost CPUs and microcontrollers (e.g.: 
Arduino, Raspberry Pi) it was experienced a blossoming in the market of low-cost sensors as well 
that could be embedded and managed with said platforms. These kinds of sensors cover a wide 
range of purposes from motion sensing, to cameras, to meteorological parameters up to 
monitoring airborne pollutants. The two latter areas become of particular interest for research 
fields such as precision agriculture and air quality research due to the possibility of deploying at 
an affordable cost a relatively dense network of sensors. While low-cost sensors are not expected 
to have the same performance as a high-cost analogue, their affordability allow them to be 
deployed in high numbers, therefore better characterizing certain phenomena that exhibit an 
high-degree of spatio-temporal variability. Air pollution monitoring is a prime example: reference 
instruments from local environmental protection agencies are extremely costly and, therefore, 
rarely more than three or four are deployed for a given municipality. While such locations are 
supposedly representative of the wider area it is quite possible that such sparse measurements 
are unable to capture certain sources or certain local effects that are distant from the 
measurement areas. Low-cost sensors, while not having the same absolute precision of reference 
instruments, can, instead, explore this unresolved spatial variability. This potentiality is attracting 
attention from all sides: market shares of these kind of sensors are increasing alongside the web-
enabled microcontrollers/CPUs on which they are embedded (sharing, in this sense, the modern 
IoT revolution). Deployed sensor networks, enabling cities to better sense their environment and, 
eventually, respond to changes are a key infrastructure for the Smart Cities concept that MIT 
underlined as one of the 2018 ten breakthrough technologies. European Union is acknowledging 
low cost sensors networks with official publications (e.g.: Gerboles et al., 2017) as well as through 
project funding such as COST  (e.g.: EuNetAir) or other actions (e.g.: EIP-SCC). All of this is of course 
intertwined with the growing scientific interests along these kind of technologies (e.g.: Castell et 
al., 2017), meaning a great relevance for all kind of research infrastructures working on 
sustainability, air pollution and atmospheric sciences. An example of such scientific preponderance 
is clearly visible by researching “low cost sensors network” in Web of Science: considering only 
results related to “air quality” (one of the most relevant scientific themes for these kinds of 
networks and the one on which CNR IBIMET/ANAEE has most experience) the research brings up 
330 total results. Also, as it is clearly visible from figure 1, the scientific interest towards these 
kinds of sensors networks rose quickly in the past 4 years (2014-2018). 
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Figure 1: Thomson Reuter Web of Science Total Publications per Year on the topic “low cost 
sensors network” refined by topic “air quality”.  

 

While there is a certain “market explosion” for air quality sensors, in the case of the marine domain 
the market is still relatively small, even considering the Argo programme (~800 new floats a year 
worldwide). This issue may hinder the adoption of innovations, considering the investments 
required to evolve from a sensor to a smarter version.  Embedded processing of sensor data 
therefore will likely take off mainly for sensors which produce large amounts of information that 
are too costly (in terms of economics and/or energy) to transmit over current data links. Sensor 
embedded processing is therefore still mainly driven by the need for data compression in specific 
scenarios, e.g. enabling the transmission of information via reduced amounts of data packets to 
users. A requirement for data transmission standards and lower influence of manufacturer specific 
interfaces to promote easier maintenance is playing also a large role such as in the case of EMSO 
Generic Instrumentation Module – EGIM – (Lanteri et al., 2017). Still, the scientific interest does 
not seem to be abated by this kind of market hindrances. Figure 2 shows that even for the marine 
domain the last 4 years received an increase in publications.  
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Figure 2: Thomson Reuter Web of Science Total Publications per Year on the topic “low cost 
sensors network” refined by topic “marine sensor”.  

 

Given this kind of relevance for the scientific world and, therefore, for many research 
infrastructures, it is no surprising that part of the ENVRIPlus project is focused on 
recommendations regarding these kinds of sensors, especially due to the ever-growing scenarios 
of low-cost sensors producers and an ever-increasing difficulty in choosing a fitting sensor for the 
specific purpose at hand.  

2. ANATOMY OF A LOW-COST SENSOR NETWORK 
 

The deployment of a network of sensors generally follows the architecture detailed in figure 3. 
Multiple sensor nodes (which may consist of a single sensor monitoring a single variable or hubs 
of multiple sensors monitoring an array of variables) are distributed across the domain of interests. 
These nodes gather environmental data and relay them to a central database that is accessible to 
the end users (scientists, citizens, policy-makers, etcetera). 

Sensor nodes can be either located in fixed positions (e.g.: David et al., 2016), either mounted on 
mobile platforms (such as cars, bikes, buses, etc., e.g.: Velasco et al., 2016), but they all rely the 
data to a central database/back-end system (e.g.: Mansour et al., 2014). This is true both for the 
atmospheric environment and for marine applications with the main differences consisting in the 
type of platforms employed. While atmospheric sensors might use land vehicles and small 
unmanned aerial vehicles (UAVs) as roving platforms, in the marine environment sensors would 
be deployed on stand-alone or cabled platforms, drifting floats (for both surface and water 
column) and autonomous underwater vehicles (AUVs).  

 

 

Figure 3: Typical configuration of a low-cost sensors network.  
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The general structure of a sensor node was well captured by Zhang et al. (2016) and re-presented 
here in figure 4 

 

 

Figure 4: General structure of a wireless sensor network node, from Zhang et al. (2016) 

 

The microcontroller unit (MCU) is the core of each sensor node acting as its “intelligence” and 
bridging the gap between the actual sensing elements, the communication portion of the node 
and the eventual onboard storage memory. The MCU is, in short, where embedded processing 
takes place. For the preparation of the present report more than 30 scientific papers and 
conference proceedings (see Supplementary Material 1: Wireless Sensor Network Literature) have 
been examined alongside with CNR IBIMET/ANAEE own experience. In most of the examined cases 
(94%) wireless sensor nodes made use of simple 8 or 16 bit microcontrollers (ARM, Intel, 
STMicroelectronics, Jennic, Texas Instrument were the main brands) and only in 6% of the cases 
more complex intelligences were employed (actual CPUs with embedded full-fledged operative 
systems). The MCU loop and, therefore, the embedded processes happening in different sensors 
nodes  such as the IBIMET ones, the marine sensors from PLOCAN or Ifremer, or sensors from the 
literature, are actually very similar and follow the present scheme: 
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1. Read sensors data. The MCU acquires sensors data, generally voltages outputted by the 
sensors, and digitizes them with an onboard analog-to-digital (ADC) module. Specific 
sensors may need signal conditioning to output voltages readable by the MCU ADC 
module. This kind of conditioning is generally performed by dedicated circuit boards that 
are connected to the sensors on one side and to the MCU on the other (e.g.: Abraham & 
Li, 2016).  
 

2.  Format sensors data. the MCU passes the sensor data downstream eventually formatting 
them in some sort of data package. In case of the IBIMET experience, the onboard 
microcontroller, for example, generates a standard comma separated ASCII string. 
Currently being tested in marine systems, Sensor Web Enablement (OGC) may 
progressively harmonize this formatting layer to enable the transmission of data and 
metadata in an open standard fashion.  

 
 

3. Store/transmit sensors data. The formatted data are either passed to some onboard 
memory (such an SD card or an EEPROM) either transmitted through a communication 
module that sends them through some kind of communication protocol. Sometimes these 
two processes may operate in parallel: in IBIMET experience, for example, the data string 
is both stored on an onboard memory, both sent to a centralized database through GPRS 
transmission. This ensures that data are not lost even in case of loss of connectivity. Open-
ocean sensor systems generally transmit data via satellite links, deep stand-alone 
observatories also make use of acoustic modems with proprietary protocols before data 
can be air-transmitted to the data centers. 

 

After a package has been sent, the MCU loops over, starting again from point 1). This might happen 
immediately or after some predetermined time has passed. The latter approach can be used to 
save battery power letting the system “sleep” between one acquisition and the other. This kind of 
approach has been used for example by Sanchez-Rosario et al. (2015): in their system each node 
was in sleep mode until a pre-programmed real-time clock (RTC) interrupt triggered data 
acquisition. Maraj et al. (2017) perform some simple computations on the Arduino MCU for their 
system in order to compute an air quality index. This is done in order to display it on an attached 
LCD display, but the latter is far from standard in a wireless sensor network (WSN). The main point 
of a WSN is, as the name implies, the transmission of the data and not the local display of it, 
therefore this embedded processing step is not considered in the comparison. In most of the 
analyzed systems the real intelligence is downstream, on the elaboration made on the data 
received by the central database. This makes sense: many of the WSN nodes may be deployed in 
mobile or remote environments where it is not possible to obtain continuous power from the grid. 
In Brienza et al. (2015) for example, the nodes are powered with 6600 mAh rechargeable batteries; 
in Velasquez et al. (2017), a 3.7 V, 2000 mAh battery recharged through a solar panel is used and 
batteries are employed also in Völgyesi et al. (2008); Zhang et al. (2016); Zheng et al. (2016) and 
many others systems. In short, sensor nodes are actually designed to minimize the amount of 
embedded processing beside physical boards for sensors signal conditioning and data 
transmission. In all the examined papers the embedded processing is very shortly detailed (if at 
all) since it follows a straightforward schematic for which the main differences are related to the 
programming language of the MCU: the two aspects of WSN on which literature (and IBIMET) 
display a great amount of effort and detail are sensors calibration and communication protocols. 
These are the two vital aspects of each WSN node since they are related to the quality of the 
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transmitted data (calibration) and the ability of the sensor node to transmit data efficiently 
(communication protocols). 

 

3. CNR IBIMET/ANAEE EXPERIENCE: THE AIRQINO WSN 
 

The AIRQino sensor node, follows closely the schematics of fig. 3, with the main difference that 
there are two MCU layers: a PIC MCU board for sensor reading and signal digitization and an 
Arduino-compatible MCU (Seeduino Stalker V3) for the acquisition of the digitized signals and the 
wireless transmission via a GPRS shield. The AIRQino node in schematized in fig. 5.   

 

Figure 5: Schematics of CNR IBIMET/ANAEE AIRQino WSN Node 

 

The sensing elements are installed on the AIRQino sensors board (ASB) which mounts a PIC-based 
MCU. The firmware of the MCU acquires the sensors voltages and digitizes them via an onboard 
ADC. The firmware acquires one sample per second and can be programmed to make a simple 
despiking via a 120-samples running average. The ASB is connected to the Tx and Rx serial pins of 
the main MCU. The latter uses these pins to poll the ASB and receive the digitized data in the form 
of an ASCII string. Polling interval is set at firmware level and can be configured via the standard 
Arduino IDE. The same firmware is responsible to invoke the GPRS shield to transmit the ASCII 
string to the IBIMET data server as well as saving it on an external memory. The latter operation is 
a backup solution to avoid losing data in case of GPRS signal loss. The system is powered via DC 
current: an internal DC-DC converter unit allows for a wide input range (10-30 Vdc) and the 
consumption is of 200mA (at 12Vdc and 2.5W). This set-up allows to power the AIRQino WSN node 
either via batteries or via regular power outlets (provided an AC-DC adapter is used) and makes it 
suitable for attachment, for example, to car or electric-bike batteries for mobile applications. The 
standard sensors array for the AIRQino system is detailed in the following table (table 1). 
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Parameter Unit Sensor Range 

Temperature °C AM2315 -40 – 80 

Relative Humidity % AM2315 0 – 100 

CO2 ppm SenseAir S8 0 – 2000 

O3 ppb MQ-131 0 – 400 

NO2 ppm MICS-2714 0.05 – 5 

CO ppm MICS-5524 1 – 30 

PM µg m-3 SDS011 0 – 999 

VOC ppm MICS-5524 1 – 100 

Table 1: AIRQino standard sensors array 

The whole system is packaged in a rugged casing that allows it to withstand rainfall, dust, 
vibrations and even extreme conditions (AIRQino has been deployed in a long-term campaign on 
the Svalbard Islands). The casing is also made so that the airflow is optimized to minimize 
interferences and artifacts on the measurements of the sensors to the potential presence of 
interfering chemicals. Figure 6 shows some of the AIRQino deployments including the versions 
that have been specifically designed for airborne applications.  
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Figure 6: Some of the AIRQuino WSN node deployments in both fixed, mobile and extreme 
environments. 

4. CALIBRATION: THE MAIN ISSUE WITH LOW-COST WSN 
 

To put it in the words of Brienza et al. (2015): “in order to obtain an acceptable accuracy each 
sensor node should be individually calibrated. The calibration phase is often overlooked in articles 
regarding sensor networks” (boldface is from the authors). The main issue with low-cost WSN is 
not the on-board data processing, but rather obtaining accurate and sensible measurements with 
sensors that are just a fraction of the cost of the regular scientific sensors.  

For the purpose of sensors calibration there are multiple techniques that can be applied to 
compare low-cost sensor outputs to one (or more) high-cost reference sensors. 

 

• Regression: In the standard univariate linear regression (LR) the response of the low-cost 
and reference sensors are compared as a linear function of one another: 

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑞𝑞 (1) 

Where y are data from the reference sensors, x are data from the low-cost sensors and m 
and q are respectively the slope and the offset of the line best-fitting this set of (x,y) 
couples.    In certain cases the reference sensors data are modeled not only after the 
correspondent low-cost sensors outputs, but as a linear combination of multiple variables. 
This is the so-called multivariate linear regression (MLR): 

𝑦𝑦 = 𝑚𝑚1𝑚𝑚1 + 𝑚𝑚2𝑚𝑚2 + 𝑚𝑚3𝑚𝑚3 + ⋯+ 𝑞𝑞 (2) 

As an example the reference sensor NO2 (y) could be modeled as a function of low-cost 
sensor NO2 (m1x1), air temperature (m2x2) and relative humidity (m3x3). This allows to 
explain the reference sensors data variance with more variables that can be potentially 
acting on the concentration value. In certain cases it is possible to better fit low-cost 
sensors data to reference ones by expecting a nonlinear relationship between the two 
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sensors. In the latter case it is a curve that better fits the couples of (x,y) points. Such kind 
of relationship are represented by higher degree formulas and can therefore be named 
nonlinear regressions (NLR). An example is the power relationship that can be described 
as: 

𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑞𝑞 (3) 

 

 In which the high cost sensor data (y) are a nonlinear function of the low-cost ones (x). 

Finally, all the presented regression methods are based on minimizing the sum of squared 
residuals in the modeled system (i.e.: least-squares method), but that method is based on 
the assumption that the independent variable (x) is measured without error as a design 
variable, while y is modeled as having an uncertainty or error. Since both can have an 
underpinning uncertainty, the least-squares assumptions can be violated. Methods such 
as the reduced major axis (RMA) regression can, instead, explicitly handle errors in both 
x and y variables.  

• Machine Learning: Data analysis has been recently empowered by a series of machine 
learning (ML) models. Machine learning is a subset of the artificial intelligence topic and 
it focuses on “teaching” a computational device to predict outcomes on the basis of 
experience. Machine learning is closely related to computational statistics and 
mathematical optimization and it’s based on algorithm that “learn” to make sense of input 
data. This might happen by training algorithms with a set of known “truths” that the 
algorithm may compare with its own predictions and consequently adjust (supervised 
learning) or leaving up to the algorithm the classification of the input data and, therefore, 
the ideation of a forecast model (unsupervised learning). These tasks may be 
accomplished with different approaches. It is out of the topic of this deliverable to give a 
comprehensive explanation of machine learning algorithms, but the most common 
approaches (that are found in the papers cited in Table 2) are briefly touched to give the 
reader a brief understanding of the following discussion about WSN calibration. Neural 
networks (NN) are a specific learning model. These networks have input nodes that 
receive the input data as-is and have the only use of passing them down to one or more 
layers of “neurons”. In these layers the nodes (neurons) may perform different kind of 
transformation to the input signal and they pass it to connected neurons (connections are 
called “edges”). Edges have different weight associated to the input signals (which may 
also be 0, meaning that two neurons are essentially decoupled for that specific output) 
and these weights are adjusted through the learning process. Neural networks have finally 
an output layer that represents the exit from the system. Beside the input and the output 
layer the other ones are termed “hidden layers” since they represent essentially a black 
box regarding the processing of the data. In calibration terms it generally means that 
neural networks receive the data to calibrate as inputs (usually in a multivariate fashion) 
as well as the reference instruments data as correct outputs. The network then learns to 
derive correct data from the raw instrumental ones, generating a model that can, after its 
training, be applied to all the data outside the calibration set. A simpler ML algorithm 
compared to NN is the k-nearest neighbors one (kNN). As per NN, kNN can perform either 
regression or classification feats and it does so by taking a “vote” from a certain amount 
(k) of the nearest elements (NN) to the point that needs to be classified. kNN needs 
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minimum learning, its non-parametric and works on the basis of feature similarity (the 
“vote” of the nearest neighbors). Finally, random forests (RF) are a method for ensemble 
learning that again can work for both classification and regression. The method performs 
a classification/regression on the basis of the modal outputs of a series of decision trees 
(a “forest”). 

Table 2 sums up all the examined literature on low-cost sensors calibration along with CNR 
IBIMET/ANEE own experience. The table reports the reference, the kind of calibrated pollutant, 
the used sensor, the type of calibration and the coefficient of correlation (r2). The latter coefficient 
indicates the trend-wise agreement between the reference sensor and the low-cost sensor data 
after the application of the calibration model. This is the most important kind of agreement: while 
a difference in concentration magnitude can be generally an offset, a lack of agreement on the 
trend cannot be generally corrected in post processing.  

 

 

Reference Pollution 

parameter 

Sensor Calibration R2 

Holstius et al., 2014 PM 2.5 PPD42 LR ≈ 0.5 - 0.7 

Esposito et al., 2016 NO2 NO2-B4 ML(NN) ≈ 0.6 - 0.8 

Esposito et al., 2016 NOx NO2-B4; NO-B4 ML(NN) ≈ 0.7 - 0.9 

Esposito et al., 2016 O3 O3-B4 ML(NN) ≈ 0.2 - 0.7 

Spinelle et al., 2015 O3 O3-B4 LR < 0.1 

Spinelle et al., 2015 O3 O3-B4 MLR ≈ 0.5 

Spinelle et al., 2015 O3 O3-B4 ML(NN) ≈ 0.9 

Spinelle et al., 2015 O3 O3_3E1F LR ≈ 0.8 - 0.9 

Spinelle et al., 2015 O3 O3_3E1F MLR ≈ 0.8 - 0.9 

Spinelle et al., 2015 O3 O3_3E1F ML(NN) ≈ 0.9  

Spinelle et al., 2015 NO2 CairClip NO2 LR ≈ 0.2 - 0.5 
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Spinelle et al., 2015 NO2 CairClip NO2 MLR ≈ 0.6 - 0.7 

Spinelle et al., 2015 NO2 CairClip NO2 ML(NN) ≈ 0.5 - 0.6 

Spinelle et al., 2015 NO2 NO2-B4 LR ≈ 0.1 - 0.2 

Spinelle et al., 2015 NO2 NO2-B4 MLR ≈ 0.3 - 0.7 

Spinelle et al., 2015 NO2 NO2-B4 ML(NN) ≈ 0.5 - 0.6 

Spinelle et al., 2015 NO2 NO2_3E50 LR < 0.1 

Spinelle et al., 2015 NO2 NO2_3E50 MLR ≈ 0.6 - 0.8 

Spinelle et al., 2015 NO2 NO2_3E50 ML(NN) ≈ 0.5 - 0.6 

Spinelle et al., 2015 NO2 MICS-2710 LR ≈ 0.2 

Spinelle et al., 2015 NO2 MICS-2710 MLR ≈ 0.7 

Spinelle et al., 2015 NO2 MICS-2710 ML(NN) ≈ 0.5 - 0.6 

Spinelle et al., 2015 NO2 MICS-4514-NO2 LR ≈ 0.2 - 0.3 

Spinelle et al., 2015 NO2 MICS-4514-NO2 MLR ≈ 0.5 - 0.8 

Spinelle et al., 2015 NO2 MICS-4514-NO2 ML(NN) ≈ 0.5 - 0.6 

Spinelle et al., 2015 NO2 CairClip NO2 LR ≈ 0.2 - 0.5 

Spinelle et al., 2015 NO2 CairClip NO2 MLR ≈ 0.6 - 0.7 

Spinelle et al., 2015 NO2 CairClip NO2 ML(NN) ≈ 0.5 - 0.6 

Spinelle et al., 2017 NO NO_3E100 LR <0.1 

Spinelle et al., 2017 NO NO_3E100 MLR <0.1 

Spinelle et al., 2017 NO NO_3E100 ML(NN) <0.1 - 0.2 
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Spinelle et al., 2017 CO CO-TGS5042 LR ≈ 0.1 

Spinelle et al., 2017 CO CO-TGS5042 MLR < 0.1 

Spinelle et al., 2017 CO CO-TGS5042 ML(NN) ≈ 0.3 - 0.4 

Spinelle et al., 2017 CO MICS-4514-CO LR ≈ 0.8 

Spinelle et al., 2017 CO MICS-4514-CO MLR ≈ 0.8 

Spinelle et al., 2017 CO MICS-4514-CO ML(NN) ≈ 0.3 - 0.4 

Spinelle et al., 2017 CO2 S-100H-CO2 LR ≈ 0.1-0.9 

Spinelle et al., 2017 CO2 S-100H-CO2 MLR ≈ 0.8-0.9 

Spinelle et al., 2017 CO2 S-100H-CO2 ML(NN) ≈ 0.5 - 0.8 

Spinelle et al., 2017 CO2 CO2_GASCARD LR <0.1 

Spinelle et al., 2017 CO2 CO2_GASCARD MLR ≈ 0.2 

Spinelle et al., 2017 CO2 CO2_GASCARD ML(NN) ≈ 0.5 - 0.8 

Hagan et al., 2018 SO2 SO2-B4 LR >0.9 

Hagan et al., 2018 SO2 SO2-B4 ML(kNN) >0.9 

Hagan et al., 2018 SO2 SO2-B4 ML(LR+kNN) >0.9 

Wang et al., 2015 PM2.5 PPD42NS LR >0.9 

Wang et al., 2015 PM2.5 PPD42NS RMA >0.9 

Wang et al., 2015 PM2.5 DSM501A 
 

LR ≈ 0.9 

Wang et al., 2015 PM2.5 DSM501A 
 

RMA ≈ 0.9 

Wang et al., 2015 PM2.5 GP2Y1010AU0F  LR >0.9 
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Wang et al., 2015 PM2.5 GP2Y1010AU0F  RMA >0.9 

Mijling et al., 2018 NO2 NO2-B4 MLR  ≈ 0.6 - 0.9 

Zimmerman et al., 2018 CO CO-B4 LR  ≈ 0.8 

Zimmerman et al., 2018 CO CO-B4 MLR  ≈ 0.8 

Zimmerman et al., 2018 CO CO-B4 ML(RF)  ≈ 0.9 

Zimmerman et al., 2018 CO2 SST CO2S-A LR  < 0.1 

Zimmerman et al., 2018 CO2 SST CO2S-A MLR  ≈ 0.1 

Zimmerman et al., 2018 CO2 SST CO2S-A ML(RF)  ≈ 0.7 

Zimmerman et al., 2018 O3 Ox-B4 LR N/A 

Zimmerman et al., 2018 O3 Ox-B4 MLR  ≈ 0.6 

Zimmerman et al., 2018 O3 Ox-B4 ML(RF)  ≈ 0.9 

Zimmerman et al., 2018 NO2 NO2-B4 LR  ≈ 0.4 

Zimmerman et al., 2018 NO2 NO2-B4 MLR  ≈ 0.2 

Zimmerman et al., 2018 NO2 NO2-B4 ML(RF)  ≈ 0.7 

Borrego et al., 2016 PM10 PPD20V LR ≈ 0.3 

Borrego et al., 2016 PM10 CAIR LR ≈ 0.1 

Borrego et al., 2016 PM10 PPD42 LR ≈ 0.3 

Borrego et al., 2016 PM2.5 CAIR LR <0.1 

Borrego et al., 2016 PM2.5 PPD42 LR ≈ 0.2 

Borrego et al., 2016 O3 O3-B4 LR ≈ 0.1 - 0.7 
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Borrego et al., 2016 O3 MICS-OZ-47 LR ≈ 0.8 

Borrego et al., 2016 O3 MICS-2610 LR ≈ 0.1 

Borrego et al., 2016 SO2 SO2-B4 LR <0.1 - 0.2 

Borrego et al., 2016 NO2 NO2-B4 LR <0.1 - 0.9 

Borrego et al., 2016 NO2 NO2_3E50 LR 0.9 

Borrego et al., 2016 NO2 MICS-2710 LR <0.1 

Borrego et al., 2016 CO CO-B4 LR ≈ 0.5 - 0.9 

Borrego et al., 2016 NO NO-B4 LR ≈ 0.3 - 0.8 

Jiao et al., 2016 PMx PM-SYS-1 LR ≈ 0.4 

Jiao et al., 2016 PMx PM-SYS-1 MLR ≈ 0.4 

Jiao et al., 2016 PMx DC1100 LR ≈ 0.3 -0.4 

Jiao et al., 2016 PMx DC1100 MLR ≈ 0.4 - 0.6 

Jiao et al., 2016 PMx PPD60PV LR ≈ 0.4 

Jiao et al., 2016 PMx PPD60PV MLR ≈ 0.4 - 0.5 

Jiao et al., 2016 O3 Aeroqual SM50 LR ≈ 0.8 - 0.9 

Jiao et al., 2016 O3 Aeroqual SM50 MLR ≈ 0.9 

Jiao et al., 2016 O3 Cairclip-O3 LR ≈ 0.7 - 0.9 

Jiao et al., 2016 O3 Cairclip-O3 MLR ≈ 0.9 - > 0.9 

Jiao et al., 2016 NO2 Cairclip-NO2 LR ≈ 0.6 

Jiao et al., 2016 NO2 Cairclip-NO2 MLR ≈ 0.6 - 0.8 
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Jiao et al., 2016 NO AQMesh LR ≈ 0.8 - 0.9 

Jiao et al., 2016 NO AQMesh MLR ≈ 0.7 - 0.8 

Jiao et al., 2016 CO AQmesh LR ≈ 0.6 - 0.7 

Jiao et al., 2016 CO AQmesh MLR ≈ 0.6 - 0.7 

Castell et al., 2017 CO AQmesh LR ≈ 0.3 

Castell et al., 2017 NO AQmesh LR ≈ 0.9 

Castell et al., 2017 NO2 AQmesh LR <0.1 - 0.4 

Castell et al., 2017 O3 AQmesh LR <0.1 - 0.7 

IBIMET O3 MQ-131 NLR ≈ 0.6 - 0.9 

IBIMET NO2 MICS-2714 NLR ≈ 0.5 - 0.7 

IBIMET CO MICS-5524 NLR ≈ 0.2 - 0.5 

IBIMET PM2.5 SDS011 NLR ≈ 0.5 - 0.9 

IBIMET PM10 SDS011 NLR ≈ 0.3 - 0.8 

Table 2: Calibration data for different pollution parameters, sensors and calibration methods.  

There are several important messages and caveats that RIs can derive from the apparently simple 
Table 2 of the present deliverable.  

1. First and foremost is that more complex calibration methods are not mandatorily better 
than simpler ones. In Spinelle et al. (2017), for example, the CO-B4 sensors returned a 
correlation coefficient of roughly 0.8 for both LR and MLR, while the machine learning 
methods achieved coefficients that are not greater than 0.4.  

 

2. The benefits of employing a MLR calibration strongly depends by the feasibility of always 
having the full set of variables and to have them validated. This might not always be the 
case when deploying a certain subset  of sensors also because it is not known a priori what 
would be the most significant variables co-varying with the pollution parameter  to be 
calibrated. While on one hand a certain sensor could benefit from MLR as, for example, 
the O3-B4 in Spinelle et al. (2017) (r2 rose from <0.1 up to 0.5 when switching from LR to 
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MLR); in certain cases it could worsen the calibration. An example of the latter is NO2-B4 
in Zimmerman et al. (2018) where LR returned an r2 of 0.4, while MLR of 0.2. 

 
  

3. Sensors themselves have a strong impact. Different sensors measuring CO, for example, 
yielded widely different results when calibrated with LR. CO-B4 returned an r2 of 0.8 
(Zimmermann et al., 2018); CO-TGS5042 one of roughly 0.1 (Spinelle et al., 2017); MICS-
454-CO one of 0.8 (Spinelle et al., 2017) and, finally, MICS-5524 one between 0.2 and 0.5 
(IBIMET). Choosing a sensor brand that obtains good results in literature is also not a 
complete guarantee of good results. Sensor batches might have quite different 
sensitivities and performances. This have been seen by IBIMET and by, for example, 
Borrego et al. (2016) where the same NO2-B4 sensors yielded r2 ranging between <0.1 
(almost no agreement with references) up to 0.9 (almost perfect agreement with 
references).  
 

4. Reactive pollutants complicate greatly environmental calibrations. Substances such as O3 
and NOx are photochemically active, while CO2 may have interactions with environmental 
relative humidity. This may explain poor performances of simple calibration methods on 
these pollutants (e.g.: Zimmerman et al., 2018; Spinelle et al., 2017). For these pollution 
parameters a multivariate or more complicated approach might be necessary for 
appropriate calibration. Even in this case the caveats about MLR of point 2 still apply: for 
NO2-B4 even a MLR approach yielded only a r2 of 0.2, and only ML algorithm could 
increase this relationship up to 0.7 (Zimmerman et al., 2018).  

 
 

5. Linearity of the response is not always guaranteed. One of the reasons for which LR may 
yield poor results is that, compared with scientific-grade high cost instruments, low cost 
sensors may not respond linearly to the increase in pollution parameters. This has been 
seen by IBIMET and integrated in its calibration approach which explores different NLR 
regression methods.  

 

On the basis of this analysis any RI that’s interested in using low cost sensors should pay particular 
attention to the calibration of the individual sensors and avoid as much as possible the usage of 
common coefficients/models based on the testing of only a batch of sensors in the network. It 
must be paid particular attention to the sensors measuring reactive pollutants and to the effective 
linearity of the response. The suggestion is to employ univariate LR and NLR methods as a first 
calibration instance and move to MLR and ML methods only if the full set of variables that will be 
used as an input to these methods can be obtained consistently across the network of sensors and 
can be validated on its own.  

5. COMMUNICATIONS: ALTERNATIVE APPROACHES 
 

5.1 LORA WAN AND SIGFOX 

One of the take-away messages from paragraph 2 is that the main issues with WSN are not related 
to embedded processing practices but rather to calibration and communication issues. IBIMET 
main approach with AIRQino boards is to transmit data via a GPRS, which is feasible since main 
deployments are in urban areas with good cellular coverage. This is not true for WSN that are 
applied in more remote areas such as the precision agriculture version of the AIRQino node (the 
AgroDuino node) where coverage is not available. In rural areas signal coverage might not be the 
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only problem, but also power availability. More often this means that WSN nodes must rely on 
battery power rather than continuous sources: squeezing out more efficiency from the 
communication protocol becomes of paramount importance to avoid draining the batteries in a 
short amount of time. Also, the WSN nodes generally need to transmit small packages (often 
strings or even binary data) for which GPRS protocol specification are oversized in terms of 
bandwidth and speed of communications. Employing GPRS also means the need to pay a monthly 
fee to a phone operator which not only can be a significant cost depending on the number of 
nodes, but also a significant drawback if sensors must be shared between RIs and located in 
different countries with different operators. Another limitation comes for the tracking of extreme 
phenomena such as water pollution during storms (Jerico RI in coastal zone for instance) or 
unstable slopes or volcanology (EMSO RI) the public GPRS network is liable to stop working during 
the targeted event. 

A solution to this problem could come from Low-Power Wide-Area Networks (LPWAN), allowing 
long-range, low-bitrate communications between connected devices and to be an alternative to 
GPRS systems for machine-to-machine (M2M) communications. These kinds of networks generally 
operate at 100 bps and are extremely conservatives in terms of power, requiring only 2.5 Watt of 
current. Beecham Research foresees that by 2020 LPWAN networks will cover 26% of the global 
IoT connectivity market, with 345 million of connections. An alternative approach to LPWAN is the 
ZigBee proprietary protocol, but, beside being fully proprietary it does not yield the same 
efficiencies in terms of range and power consumption (an overview of the different 
communication protocol is visible in figure 7). 
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Figure 7: Comparison of the various communication protocols 

 

Of course, LPWAN carriers are not the cellular ones and, in fact, there are two main technological 
approaches: chirp spread spectrum (CSS) for which LoRa (Cycleo, Grenoble, France, then acquired 
by Semtech) is the main commercial product and ultra narrow band (UNB) for which SigFox is the 
main commercial product.  

CSS employs wideband linear frequency modulated chirp pulses to encode information. This 
makes it resistant to multi-path fading and Doppler effect. LoRa in specific uses license-free sub-
GHz radio frequency bands. The LoRa signal has up to 15 km range in open field and can encrypt 
data with AES-128 making communications secure. LoRa uses a market approach of free-software 
but closed-hardware: software is open and anyone can freely use it by joining the LoRa Alliance, 
but transmission systems are only produced by Semtech. The typical architecture of a LoRa 
network is presented in figure 8. 

 

Figure 8: LoRa typical architecture.  

 

As it is possible to see from figure 6, LoRa nodes transmit data to a concentrator/gateway that 
needs a TCP/IP enabled protocol to finally relay data over-IP to a database/server. This means that 
only the concentrator (or concentrators in case of wide networks) require GPRS coverage and 
subscription, while all the nodes transmit data over LoRa with a low power consumption and no 
subscription fees.  

 

UNB technology focuses, instead, on a very narrow spectrum channel as the carrier. SigFox is one 
of the main players for UNB LPWAN and has a good coverage across Europe since every country 
has its own local SigFox operator managing the local infrastructure. The marketing strategy of 
SigFox is the opposite of LoRa: there is no proprietary encoding for data transmission and 
therefore anyone can build a SigFox transmitter/receiver, but a subscription is needed to transmit 
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packages over SigFox. The SigFox infrastructure then takes care of over-IP secure transmission of 
packages to the end-user infrastructure (data server etcetera, see figure 9).  

 

 

Figure 9: SigFox infrastructure 

 

The overall performances of the systems are comparable and therefore the choice generally 
depends on the amount of information that needs to be sent: if packages are sparse enough an RI 
could choose to invest in a moderate subscription and cheaper hardware, if the amount of 
packages increases the LoRa approach is more efficient.  

 

For AgroDuino (figure 10) IBIMET chose SigFox due to the low amount of sent packages.  The main 
difference with the AIRQino board is the usage of a SigFox instead than of a GPRS shield for data 
transmission as well as sensors for soil humidity and temperature instead than airborne pollutants. 
Finally, the other significant differences are the usage in the MCU programming of the “LowPower” 
library and the casting of the data-type.  

Data casting reduces the size of the transmitted packages by forcing the data acquired from the 
sensors to the smallest possible data-type for the acquired values (e.g.: battery voltage is first 
converted to a value ranging between 0 and 255 and then casted as unsigned char).  

After each transmission through the SigFox shield the LowPower library switches the MCU to a 
sleep mode until the next acquisition/sending cycle. Considering only the MCU absorption this 
would yield up to 28 days of continuous operation with a data package sent every 15 minutes on 
a single battery charge (12V, 7.2 Ah battery).  

The addition of a solar panel to the AgroDuino set-up combined with such a low-power operation 
makes the WSN node energy independent even in a situation where no continuous sources of 
power are available. 
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Figure 10: an AgroDuino WSN node deployed in a vineyard 

5.2 THE PLOCAN EXPERIENCE - SIGNAL PREPROCESSING IN THE MARINE ENVIRONMENT 
 

The interest in monitoring underwater sound has raised in European marine RIs with the European 
Marine Strategy Framework Directive (MSFD) Descriptor 11. Open-ocean monitoring of 
underwater sound for environmental purposes (ambient noise levels) implies the use of 
specialised high-sensitivity equipment: low-noise preamplified calibrated hydrophone (ideally 
reference hydrophones for their high sensitivity), a high sampling rate high resolution data 
acquisition system. Raw data production rates thus can routinely reach Megabits per second 
(Mbps), and terabytes per year when storing/archiving raw data - whenever desirable. Real-time 
transmission in an open-ocean context is thus still prohibitive in most cases - although costs will 
reduce the improvement of RF links, whether satellite or shore-based.  
The alternative communication approaches described in the previous paragraph (5.1) are not 
suitable for such extreme environments and for the amount of data that hydrophone generates, 
and, therefore, signal pre-processing routines are necessary to reduce the amount of data to 
manageable size.  

Preprocessing acoustic data in the marine domain is now at reach for ocean observing systems 
thanks to the use of low-cost CPUs and the work performed by the PAM community of algorithm 
and open-source software developers. Optimised versions of the codes can be ported to low-
power systems.  

Embedded acoustic processing on-board deep vehicles has reached a level of development that 
will soon become routine. Fig 10-15 illustrate the recent integration on board floats and gliders, 
with real data acquired and transmitted of sound statistics near real-time to shore (at every 
surfacing phase). Several functionalities were ported to the sensor processing unit, including MSFD 
indicators for Descriptor 11 (third octave and broadband) and bioacoustics (Toma et al. 2018, 
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Delory et al. 2019). Open hardware also allowed the addition of other routines by users as the 
linux-based firmware can be modified. 

 

 

Fig.10 MSFD indicators covered by the algorithms implemented in A1 hydrophone. See (Toma et 
al. 2018), where the implementation of all algorithms is described. 

 

 

Fig 11. Passive Acoustic Monitoring (PAM) system attached to a Liquid Robotics SV2 wave glider 
at PLOCAN (EnvriPLUS-MARCET mission, August 2018). 
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Fig.12 Whistle and click detection counts off Gran Canaria resulting from embedded acoustic 
processing, transmitted real-time, while acoustic raw data is stored on-board for further 
processing after system recovery (EnvriPLUS-MARCET, August 2018) 

 

 

Fig.13 (left) Argo float (NKE PROVOR) with hydrophone (black sensor, top of the float) NeXOS A1, 
embedding acoustic processing for MSFD descriptor 11. (right) Integration on deep glider (Sea 
Explorer, Courtesy of NeXOS and Alseamar). 
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Fig.14 Rendering of hydrophone NeXOS A1 with preprocessing stage based on an ARM processor 
(Courtesy: Developers: PLOCAN-UPC-SITEP) 

 

 

Fig.15 Deep glider (Alseamar Sea Explorer) equipped with NeXOS A1 and near real-time 
transmission of processed data (third octave band centered at 125Hz) off the Norwegian sea 

 

In such marine applications, the sensor interface is crucial. It must include digital conversion and 
sensor embedded pre processing based on calibration parameters. Another type of preprocessing 
function is the generation of alerts when a set of parameters reaches a threshold. It is under 
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development for water quality in estuaries and coastal areas (JERICO RI) and implemented on 
some EMSO sites (seismic events on EMSO Azores for instance – Cannat et al., 2016).  
For EMSO Generic Instrumentation module, a new development has been necessary to base the 
data collection of several sensors dealing with different parameters (up to 12) on very low power 
consumption electronics (Lanteri et al., 2017). The above mentioned A1 hydrophone is based on 
an innovative design with a newly developed electronic board too. 
 
To be able to compare results, standards of data formats are necessary. This data interface topic 
going as far as sensor web enablement is addressed in ENVRIPlus WP3 (see Deliverable D3.3 
“Report for best practices on robust telecom/datatransmission » - Huber et al.). 
 

6. CONCLUSIONS 
 

The present deliverable sums up all the recommendations that can be provided to RIs facing the 
challenge of deploying WSNs. The deliverable combined an extensive comparison of literature 
data with the IBIMET experience with WSNs matured in 36 months of ENVRIPlus project. After 
careful consideration it is possible to conclude that embedded processing is not the real issue with 
WSNs. Due to power and communication restrictions, the best option is, in fact, to minimize the 
amount of processing that happens on a WSN node (which generally operates with relatively 
simple MCUs). In all the surveyed literature the embedded processing followed a simple repeated 
scheme: read data from sensors, format them for transmission and send them to a central 
database where more complex elaboration could happen without taking the toll on the WSN node 
battery power. The simple embedded operations that are involved in this cycle are straightforward 
and are limit to data casting, running averages and, eventually, the application of simple formulas 
to calculate indexes from read data (Maraj et al., 2017). The criticalities on which both literature 
data and IBIMET experience converged where on the quality of the acquired data and on the 
restriction on the communication protocols. The former strongly depends on the correct 
calibration of the sensors for which careful considerations should be made in comparison to high-
cost sensors: for low-cost sensors linearity of response is not guaranteed and the difference in 
response between sensors of the same batch might be significant. The caveat for RIs is therefore 
to individually calibrate each sensor employed with both linear and non-linear regression 
methods. Finally, WSN node may be deployed in places where there’s no WI-FI, LAN or GPRS 
coverage and where access to continuous power is limited or non-existent. For the latter case the 
suggestion is to employ LPWAN communication approaches on the WSN sensors nodes and add 
sleep instructions between each acquisition cycles in order to maximize the field life of the WSN 
node and its energy independence. These solutions are not applicable in remote applications in 
the marine environment, where the set-up of these kinds of networks is unfeasible not only due 
to the complexity of the environment but also due to the amount of data generated by the sensors. 
Due to this data transmission/storage issues in the marine domain it would be advisable to 
empower the MCU with either hardware or software signal processing routines in order to have 
data sizes that are manageable for the marine WSNs. The type of platforms has driven the 
requirements for sensor design and, due to their limited autonomy and communication 
bandwidth, the advent of AUVs in monitoring the ocean is undoubtedly the main driver for 
embedded processing of sensor data. Innovations targeting AUVs will in turn also benefit other 
less constraining platforms, allowing for the deployment of more sensors and lower the cost of 
procurement due to the increasing market opportunities. Still, practices of embedded processing 
in marine applications for environmental purposes are only emerging.  
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