D7.3

PERFORMANCE OPTIMISATION FOR
ENVIRONMENTAL Rl PROJECTS:
SYSTEM DESIGN

WORK PACKAGE 7—DATA PROCESSING AND ANALYSIS

LEADING BENEFICIARY: UNIVERSITY OF AMSTERDAM

Author(s) Beneficiary/Institution

Paul Martin, Zhiming Zhao University of Amsterdam

Markus Stocker, Robert Huber | University of Bremen

Jani Heikkinen, Aleksi Kallio CSC

Accepted by: Leonardo Candela
Deliverable type: REPORT
Dissemination level: PUBLIC
Deliverable due date: 31.12.2016/M20

Actual Date of Submission: 25.1.2017/M21

A document of the ENVRIP'YS project—http://www.envriplus.eu
This document has received funding from the European Unions Horizon 2020 research and innovation
programme under grant agreement No 654182.



Abstract

This is the first deliverable for Task 7.2, “Performance optimisation for big data science”, which
addresses the optimisation strand of the ENVRIplus Data for Science theme. It provides an initial
design vision and roadmap for the next 22 months; a successor deliverable D7.4, “Performance
optimisation services for environmental ESFRI projects: prototype”, will be produced in 2018,
detailing the actual technologies that will result from the task.

‘Optimisation’ covers a broad spectrum of possibilities. The focus of the optimisation task however is
principally on the use of micro-services to optimise distributed data access, delivery and processing on
e-infrastructures used by research infrastructures and their respective communities, allowing them to
perform the kind of investigations of data that push the boundaries of what was previously achievable
with the resources available.

This deliverable (D7.3) provides four main contributions. Firstly, it describes a general design vision
for development of optimisation services, in particular noting how this vision relates to the various
concurrent activities of the Data for Science theme. Secondly, it details some of the preliminary
work that has already been performed or is in development by contributors to the task in order to
provide the ENVRIplus community with an early indication of the kind of practical investigations
being performed within this topic area. Thirdly, a provisional roadmap for the task is provided,
sketching the shape of the task and the likely interaction points with different ENVRIplus activities
up until the completion of the task in late 2018. Finally, a few recommendations are distilled from
the work done so far, and presented in the summary section at the end of deliverable.
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Project summary

ENVRIplus is a Horizon 2020 project bringing together Environmental and Earth System Research
Infrastructures, projects and networks together with technical specialist partners to create a more
coherent, interdisciplinary and interoperable cluster of Environmental Research Infrastructures across



Europe. It is driven by three overarching goals: 1) promoting cross-fertilization between infrastruc-
tures, 2) implementing innovative concepts and devices across Rls, and 3) facilitating research and
innovation in the field of environment for an increasing number of users outside the Rls.

ENVRIplus aligns its activities to a core strategic plan where sharing multi-disciplinary expertise will
be most effective. The project aims to improve Earth observation monitoring systems and strategies,
including actions to improve harmonization and innovation, and generate common solutions to many
shared information technology and data related challenges. It also seeks to harmonize policies for
access and provide strategies for knowledge transfer amongst Rls. ENVRIplus develops guidelines
to enhance transdisciplinary use of data and data-products supported by applied use-cases involving
RlIs from different domains. The project coordinates actions to improve communication and coop-
eration, addressing Environmental Rls at all levels, from management to end-users, implementing
RI-staff exchange programs, generating material for RI personnel, and proposing common strategic
developments and actions for enhancing services to users and evaluating the socio-economic impacts.

ENVRIplus is expected to facilitate structuration and improve quality of services offered both within
single Rls and at the pan-RI level. It promotes efficient and multi-disciplinary research offering new
opportunities to users, new tools to Rl managers and new communication strategies for environmental
RI communities. The resulting solutions, services and other project outcomes are made available to
all environmental RI initiatives, thus contributing to the development of a coherent European RI
ecosystem.
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1 Introduction

The integration of data from a diversity of sources is a necessary component of system-level science [9].
The ESFRI projects! represented by ENVRIplus are intended to support such integration across the
environmental and earth sciences. Beyond the larger consolidated data centres however, there is
a great variety of long-tail data in small datasets scattered across many sites, and the velocity of
data gathering (at all scales) continues to increase. Investigations of research data require not only
access to those distributed data sources, but also reliable access to e-infrastructure onto which that
data can be staged and processed. To ensure that this access is available to as broad a community
of researchers as possible, there are a number of important issues to resolve, many of which are
directly addressed by ENVRIplus, including administrative and legal issues. Here however we concern
ourselves with some of the technical issues: for example how to efficiently transport large datasets
over the network, how to efficiently provision (virtual) infrastructure to support complex workflows,
how to steer data processing activities at runtime, and when best to preserve or cache intermediate
data that might serve to reduce unnecessary process replication or data traffic.

One particular concern is how low-level configuration of e-infrastructure influences the quality of
service or experience had by researchers engaging with research infrastructure, which in turn im-
pacts their productivity and willingness to engage in ever more complex investigations of research
data. Another concern is the process by which data-driven investigations and other research applica-
tions are specified, suitable host infrastructure is customised, and then the resulting application and
infrastructure is steered during execution time.

This report is concerned with conceptual design of a system or methodology for addressing such
concerns and others within the topic of ‘optimisation’ as the first deliverable of Task 7.2 of the
ENVRIplus project.

1.1 Task overview

Within ENVRIplus, Task 7.2 “Performance optimisation for big data sciences” is concerned with
characterising the availability and scope of data and computational resources provided by research
infrastructures (RIs), and with the development of tools and services for optimising the performance
of experiments and other data-driven interactions executed via those Rls. More precisely, the task's
scope encompasses investigations into the optimisation of data, resource and service configuration on
underlying e-infrastructure, and the scheduling of tasks on that e-infrastructure; part of this relates
to the use of service-level agreements (SLAs) to establish the quality of service (QoS) that can be
expected from any given e-infrastructure or federation thereof. This task is heavily embedded in the
cross-cutting activities within the ENVRIplus “Data for Science” theme, especially those of Work
Package 5 “Reference model guided RI design”, as will be described in greater detail in section 2. It
should also work in tandem with concurrent activities in other work packages in the theme, as well
as its sister task, Task 7.1 “Interoperable Data Processing, Monitoring and Diagnosis” .

The following specific actions are specifically ascribed to Task 7.2 by the ENVRIplus description of
work:

e Provide an effective mapping between application-level performance and experience require-
ments, and infrastructure-level attributes for computing, storage and networking.

e Define test-bed requirements for any components produced, and identify the conditions under
which tools and services can be deployed.

e Prototype components to assist with the optimisation of data movement and processing in
ENVRIplus Rls such as EISCAT_3D, EMSO and EPOS.

e Investigate the use of tools for large-scale data analysis (such as Apache Hadoop, Spark and
Storm) in the context of e-infrastructures provided by initiatives like EGlI and EUDAT.

Thttp://ec.europa.eu/research /esfri/



The main role of this deliverable is to provide a design direction for Task 7.2 that will address both
the overall vision of the task and eventually each of the specific actions described above, as well as
provide a roadmap for how that direction will be followed through on in the next 22 months (the
remaining lifespan of the task). In addition, a survey of initial development conducted within the
task is also provided in order to showcase the work already done and provide the community with a
perspective on the practical investigations being embarked upon.

1.2 Motivation

Data-centric approaches play an increasing role in scientific investigations. Large corpora of informa-
tion, gathered ‘in the field’ or generated within laboratories, all requiring exploration and analysis,
much of which must be stored, curated and made accessible to researchers. Increasingly important is
the construction of specialist research infrastructure to manage the data and accompanying models,
tools and services. As the complexity and diversity of research infrastructure grows however, there is a
need for better tools to navigate and integrate the research assets provided—to provide investigators
with a unified (virtual) research environment. In addition, the requirements of compute-intensive
processing and the expense of moving large datasets across networks is leading to a greater focus on
the underlying e-infrastructures provided by the investigator, the research infrastructure or by third
parties. Initiatives such as EUDAT? (for generic data-oriented services such as storage and discovery)
and EGI® (for common compute, storage and network infrastructure) push to make utility computing
accessible to as broad a community as possible so as to promote collaboration and interdisciplinary
research in Europe and beyond.

Optimisation of infrastructure depends on a certain degree of insight into the processes that are
executed within an infrastructure. This insight is principally drawn from human expertise, but is
generally realised via one of three methods:

e The designer responsible for implementing a particular tool or service within an infrastructure
embeds their own understanding of how the infrastructure needs to operate in their implemen-
tations. This method is necessary for constructing intuitive and useful services; engineers and
designers should absolutely apply their knowledge of the domain to create effective solutions,
but must also consider the general applicability of their modifications and the resources needed
to realise optimality under specific circumstances.

e The investigator using the infrastructure is given the tools to directly configure the infrastructure
based on their own experience and knowledge of the task they are trying to perform. This can
also be done by proxy, whereby the engineers responsible for maintaining the infrastructure
configure it on their behalf. This method provides the greatest flexibility for users, but is also
the most demanding. It is certainly possible and appropriate to provide a certain degree of
configurability with data processing services, albeit with the caveat that casual users should
not be confronted with too much technical detail. This method often curtails optimisation of
resources for multiple applications that may compete for resources however.

e Experts encode their expertise as knowledge stored within or accessible to the infrastructure;
autonomous systems within the infrastructure then use that knowledge to configure the infras-
tructure in accordance with the activities being currently performed. It is this method that
is of most interest in the context of constructing interoperable architectures for environmen-
tal science research infrastructure solutions. The ability to assert domain-specific information
explicitly in generic architecture and permitting the system to reconfigure itself based on the
current global context is potentially very powerful. This method is however the most demand-
ing in terms of fundamental design and the existence and adoption of standards for knowledge
representation and reasoning.

In ENVRIplus, the goal is to provide shared services that can interact with the majority of Rls and
e-infrastructure platforms to provide workable solutions to common problems. Key to this is the use
of service catalogues that describe the services and research assets (data, tools, instruments, etc.)

2https://www.eudat.eu/
3https://www.egi.eu/
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Figure 1: Sample of reference Model objects involved in process coordination.

available to researchers. Such catalogues, and the necessary use of standardised metadata to make
them feasible, represent a particular form of information encoding into architecture. Alongside similar
elements such as semantic descriptions and knowledge bases, the provision of catalogues produces
the knowledge architecture needed to realise optimisation of processes using the third method above.

Task 7.2 is one of the spearhead activities in ENVRIplus for investigating how to build common,
interoperable services for environmental science Rls. In particular, it exists to explore how to best make
use of e-infrastructure to host data and orchestrate processes on behalf of Rls and their respective
communities. This entails the development of a small number of prototype services that can be
placed at specific strategic points in the computational research environment, but also some more
experimental investigation of the use of knowledge embedded in the system to guide automated
planning and reasoning about specific research application workflows.

The optimisation task is therefore intended to address a number of different questions, such as:

e How can we customise e-infrastructure for different kinds of computational research investiga-
tion?

e Can the customisation of e-infrastructure be partly or wholly automated?

e How can we best infer the requirements on e-infrastructure from a formal investigation design
(e.g. expressed as a process workflow)?

e How can we use virtualised infrastructure to reduce the amount of unnecessary data transfer
for data processing tasks?

e How can we make use of large-scale data processing tools while minimising the burden on
investigators of configuring and managing their deployment?

To answer these questions, a number of kinds of optimisation microservice are being proposed and
investigated. These services are intended to test techniques and technologies that may prove useful
to future Rl and e-infrastructure development, while being compatible with the broader architectural
framework being promoted by the Data for Science theme in ENVRIplus in general. While a complete
set of answers is unlikely to arise over the course of this project alone, some useful guidance, backed
by operational prototypes, is expected to be produced for the benefit of the Rls in ENVRIplus.

As with all development tasks in the ‘Data for Science’ theme, Task 7.2 is reference model guided. The
ENVRI Reference Model* clearly illustrates the complexity of the data handling pipeline, identifying
a number of computational services required to realise the discovery, movement and processing of
data. Such services include coordination services for oversight and process controllers for managing
individual processes, which are needed for staging data and process coordination in general. The
Reference Model also defines a number of roles and behaviours involved in data processing, such

“http://envri.eu/rm



as service providers needed for service coordination, and defines specific information objects that
are required in a processing context, such as persistent data and metadata catalogues, as shown in
Figure 1.

What the Reference Model does not define however is how best to realise these concepts and their
interactions in practice. Within the theme, it is the role of the model architecture (produced by Task
5.4) to provide guidance as to how to realise these concepts in a manner that supports interoperabil-
ity and shared common solutions. One of the objectives of Task 7.2 is to build upon the reference
model and the model architecture to address specifically questions of ‘optimal’ implementation by
investigating mechanisms for managing process coordination, data staging and e-infrastructure cus-
tomisation that can then be repurposed as generic recommendations to the environmental science
RlIs in ENVRIplus and beyond.

In Section 2 we examine all of the above concerns in more detail, starting with the requirements raised
by the community and moving on to their relationship with the topics addressed by the ENVRIplus
project.

1.3 Layout

The remainder of this document is laid out as follows:

Section 2 “Vision and system design” is where we place the work of Task 7.2 within the large
context of the ENVRIplus Data for Science theme, establishing the relationships that exist
with the other concurrent tasks in Work Packages 5-9. In this section we draw upon the
ENVRI reference model, semantic linking framework, and model architecture for producing
interoperable solutions in order to provide a general depiction of how optimisation services fit
into the ENVRIplus vision for environmental science Rls.

Section 3 “Current development” details some of the technical development and practical inves-
tigations that have already been carried out within ENVRIplus that contribute to Task 7.2.
In particular, we examine the problem of planning and provisioning customised virtual infras-
tructures for specific research applications, a key challenge facing the practical integration of
generic e-infrastructure into tailored research environments. We also look into certain useful
technologies that can be deployed on e-infrastructure to drive large-scale data processing.

Section 4 “Roadmap” provides a provisional schedule for Task 7.2 activities, addressing the inter-
action points with other concurrent tasks, particularly the release of critical design documents to
which our activities should comply and the release of key demonstrators to which our activities
should contribute.

Section 5 “Summary” wraps up the deliverable, summarising its main points and contribution to
the project, and providing a number of technical recommendations regarding future develop-
ment in the optimisation area.
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2 Vision and system design

Environmental science now relies on the acquisition and analysis of great quantities of data gathered
from a range of different sources. Data acquired might be consolidated into a few very large datasets,
or dispersed across many smaller datasets; data may be ingested in batch or accumulated over a
prolonged period of monitoring. Regardless of the acquisition methodology, in order to wuse this
wealth of data effectively, it is important that the data is both efficiently distributed across a research
infrastructure to support easy access and reliable availability, and is also carefully characterised to
permit easy retrieval based on a range of parameters. It is also important that experiments conducted
on the data can be easily compartmentalised so that individual processing tasks can be parallelised
and executed close to the data itself, so as to optimise use of resources and provide swift results to
investigators. Given the complexity of data curation, discovery, analysis and processing in general, it
falls to a number of optimisation services to configure the underlying research environment to best
meet the requirements of investigators both on an individual basis, but also as part of a community
engaging with a shared infrastructure.

Fundamentally, research infrastructure should enhance and extend existing research networks, whether
they be technical or social, explicit or tacit. Building and maintaining cohesive research networks
enables greater collaboration, greater transparency, and faster normalisation of new practices, all of
which can aid in producing high quality, high impact research that can be verified and validated by
peers. This is one of the fundamental tenets of ENVRIplus, and the creation of a standard reference
model, standard vocabulary and standard set of recommendations for service design are intended to
guide the creation of services that embed themselves elegantly into these networks.

With regard to the optimisation strand of ENVRIplus, we need to consider the percolation of optimi-
sation requirements throughout different ‘levels’ of research infrastructure, for example as shown in
Figure 2. Within the architecture model promoted by Deliverable 5.4 (“A development plan for com-
mon operations and cross-cutting services based on a network of data managers and developers”),
most computational research infrastructure is distributed across three main types of environment:
virtual research environments, domain-specific research infrastructures and common e-infrastructures
for providing computational resources. We revisit these types of environment in more detail in Sec-
tion 2.3, but suffice for now to say that researcher requirements for optimisation must be passed
through all of these kinds of environment and translated such that concrete requirements for the



distribution and aggregation of data and processes across resources provided by e-infrastructure can
be acquired. It is then necessary to provide the necessary tools and services to actually configure the
available e-infrastructure accordingly.

2.1 Community requirements

The requirements of the ENVRIplus community for optimisation are numerous, but are difficult to
separate from the requirements for individual services and use-cases. Nevertheless, Deliverable 5.1 “A
consistent characterisation of existing and planned Rls” endeavoured to assess the requirements that
were obtained and propose directions in which the environmental science community might proceed.
The work of Task 7.2 should take cues from this assessment, tempered by the limitations of the task
and the ability to deliver results within a short time frame.

Three questions were raised as being imperative to guiding optimisation efforts:
e What do we (the community) want optimised?
e What trade-offs to achieve that optimisation are we willing to accept?
e What measurable cost functions can we use to judge our answers to the first two questions?

Optimisation can be evaluated on an individual basis, or on a system-wide basis. While providing
more efficient service to a specific user performing a specific data-driven investigation is generally
desirable, it should not be at the cost of performance for everybody else using an RI. Approaches
that optimise the use of resources across an entire Rl, resulting in a modest improvement to overall
productivity rather than boosting a single experiment significantly, should be considered. Certain
cost functions such as energy consumption (e.g. by data centres) do not evidently impact individual
user experiences, but are still important to research infrastructure as a whole.

The focus of Task 7.2 is on matters of data delivery and efficient large-scale data processing—to
ensure that data can be quickly identified, retrieved and processed in a manner that accelerates the
investigations of a wide research community. It is clear that we should not undermine the goals of
the other tasks in ENVRIplus, which generally involve improving the accessibility and integration of
RI resources and services. We do want to make better use of available common e-infrastructure,
which does imply a certain trade-off on control of the data, albeit one that can be mitigated by
proper attribution and provenance services. With regard to cost functions, it is difficult to measure
optimality generically. Instead, different ‘optimisation’ services should each target a specific cost:
execution time, communication time, monetary cost for leased resources, energy consumption, etc.
In each case, we should be clear as to the benefit being offered to researchers, and allow the community
to make their own judgements as to their applicability to their individual investigations.

Deliverable 5.1 also notes the importance of enlisting existing technologies supported by active com-
munities, which can drive the evolution and ensure the robustness of a technological product. One of
the strands of activity in the optimisation task is therefore to investigate data processing technologies
that might be useful for communities if packaged within a service framework that would expedite
configuration and deployment.

Finally, the impact of optimisation, even if performed at the e-infrastructure level, is felt at the user
level, e.g. by researchers using an RI. As such, the runtime requirements on data processing and other
live services have to be distilled from user-level requirements, however they are expressed, and the
resultant performance of those services should be viewed in terms of how they impact user activity
or productivity. This requires an understanding of the different operational layers of e-infrastructure,
from physical resource provisioning up through virtualisation, data processing platforms and individual
application processes, and the interaction that exists between such layers.

Use-case: data subscription

Consider the example of a data subscription service, where subscribers can register to receive periodic
customised views of some data corpus. A technical use-case for just such a service, based on marine
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Figure 3: Data subscription: investigators subscribe to tailored updates of time series data provided
by an RI.

data provided by the Euro-Argo Rl and stored within the EGI FedCloud repository, is currently under
investigation within ENVRIplus®, with involvement of some of the participants in Task 7.2. Data
drawn from the Euro-Argo data service replicated on a EUDAT-based replica service. Investigators
subscribe to the data, but can tailor the extent and format of the data like a view on a database,
as well as choose the frequency of updates. The tailored updated are then provided on schedule to
investigators' cloud spaces, which they can access at their leisure.

Consider how this subscription service might scale for greater volumes of subscribers. Even given
a fast engine for data processing such as Apache Spark (used in the Euro-Argo pilot as reported
specifically in Section 3.4), too many different subscription requests for different views on the data
may lead to a degradation of service quality, either on the part of the data processing system itself,
or due to too much network traffic. Moreover, aside from having to provide the desired views on the
updated dataset on demand, these views may involve joins of multiple datasets in more advanced
cases, further increasing the processing burden service-side. Processing burden is often best alleviated
by hosting additional replicas of the main dataset(s) in order to divide the burden of subscription
processing (Figure 4, though this requires regular synchronisation of replicas. This can also help
with data traffic, but there is another approach that can be taken to address data transport costs
specifically; that is to identify most common requests (matching a given view on the data and a
given frequency), and cache those requests either locally, or remotely based on geographic proximity
(actually network distance) to given clusters of users (Figure 5).

Ultimately, what we want from ‘optimisation’ in the context of Task 7.2 is the best way to use
the underlying e-infrastructure to provide services on behalf of environmental science Rls. While
optimality can be considered on many levels (algorithmic, software, platform, etc.), we assume that
by focusing on this area, we can generate tangible improvements to the quality of service provided by
Rls to researchers by improving some of the most fundamental elements of data-driven investigation
(i.e. the delivery and staging of data for processing) in a way that is complementary to the work being
performed within other tasks in the ENVRIplus project. This entails the development of services to
solve specific problems regarding the planning and provisioning of infrastructure, and the deployment
of processes and tools. It entails the investigation of what tools are already available that can help in
various scales of data processing problem, of interest to both Rls internally and researchers outside
of the Rls. It also entails figuring out how best to gather information about the research context
and the surrounding technical environment in order to make such services as clever as possible. One
thing that is desired is the ability to automatically apply such optimisations without requiring manual

Shttps://confluence.egi.eu/display/EC/TC_24+EURO-Argo+Data+Subscription+Service
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configuration in every case. Given a plan for distributing data and processes across e-infrastructure,
we want to be able to provision the necessary underlying resources automatically, applying the same
technique and technology in multiple instances, and we want to be able to do it with the minimum of
human intercession—for example, if the e-infrastructure stretches across multiple locales or domains,
the provisioning agent should be able to provision the resources at all sites simultaneously and build
the required overlay network (we look at just such a provisioner in Section 3.2).

Over the course of Task 7.2, a methodology for developing the kind of services for optimisation we
are interested in will be refined, and a proof of concept will be developed by implementing a number
of prototype services in the context of a number of technical use-cases provided via the Rls involved
in ENVRIplus.

2.2 Optimisation in the ‘Data for Science’' theme

The ENVRIplus Data for Science theme addresses six topics of concern to environmental science Rls,
interpreted via three ‘cross-cutting’ activities (see Figure 6). The six topics identified are identification
and citation, curation, cataloguing, processing, optimisation and provenance. The three cross-cutting
activities are reference model design, semantic linking and architecture design. Task 7.2 is the
optimisation task, intended to provide technologies and recommendations to improve the use of
e-infrastructure by Rl communities to carry out data-driven investigations. It is closely linked to
Task 7.1, for processing, which is concerned with providing an integrated common platform for data
processing for the ENVRI community. The key difference between the two tasks is that whereas Task
7.1 provides a pre-packaged virtual research environment for the ENVRIplus Rls to use as they deem
fit, Task 7.2 is more of an exploration of the use of microservices for e-infrastructure customisation
on virtualised infrastructure platforms in general.

The cross-cutting activities are intended to inform design and guide interoperation. The ENVRI
Reference Model provides a generic schema for Rl architecture, and serves to establish a standard
lexicon for describing Rl components and activities, as well as the research data lifecycle. This lexicon
is formalised as a controlled vocabulary by the Reference Model ontology, that serves as the core of
the semantic linking framework, which tries to provide a means to link the different concept models
used to describe data, models, architecture and infrastructure. The model architecture is intended

11



to provide guidance as to how to actually implement interoperable common services in a fashion that
will maximise the impact of those services and reduce the complexity of future Rl development. With
respect to the optimisation task, any development should be framed in terms of the reference model
and carried out in compliance with the overall model architecture. Meanwhile, the semantic linking
provides a basis for encoding information that might be used to guide optimisation services, e.g. to
base resource selection and scheduling on application and infrastructure constraints.

2.2.1 Relationships with other topics

As illustrated in Figure 6, it is the environmental science Rls that provide the requirements which
the technologies and recommendations produced by ENVRIplus are supposed to address, and it
is the underlying e-infrastructure (whether provided by the Rls directly or via shared platforms)
that determine the available existing technologies to build upon. The common services produced by
ENVRIplus need to be customisable to meet the needs of specific Rls even as they adhere to a standard
model, and they need to be deployable on the available e-infrastructure. Optimisation services
should work principally on the e-infrastructure level, should work with data processing technologies
of interest to the research community now, and should be guided by the requirements of specific
research investigations, providing customisation based on those requirements at deployment time, or
even during runtime. In that sense, the optimisation ‘common service' is something more dynamic
perhaps than the services produced by the other five topics. Nonetheless, we can identify where
optimisation services might be of use in other topics or vice versa:

Identification and citation It is necessary to ensure availability of identification services, and it is
useful to be able to direct users to the best replicas of a given dataset that would ensure
the most effective use of the underlying network (e.g. by minimising network distance and
maximising bandwidth). In general, the existence of persistent identifiers, whether global or
localised to a particular e-infrastructure, is vital to the identification and selection of resources
and research assets in any complex application. Thus the identification and citation service
produced by ENVRIplus should be directly utilised by the optimisation services to locate assets
and plan based on the associated metadata.

Curation Streamlining the acquisition of data from data providers is important to many Rls, both
to maximise the range and timeliness of datasets then made available to researchers, and to
increase data security (by ensuring that it is properly curated with minimal delay, reducing the
risk of data corruption or loss). In general, the principal concerns of curation are ensuring
the accessibility and availability of research assets (especially, but not exclusively, data). High
availability in particular requires effective replication procedures across multiple sites. It would
be expedient to minimise the cost of synchronising replicas and to anticipate where user demand
(for retrieval) is likely to be so as to minimise network congestion.

Cataloguing Data catalogues are expected to be the main vector by which data is identified and
requested by users, regardless of where that data is ultimately taken for processing and analysis.
As such, the optimisation of both querying and data retrieval is of concern. Moreover, optimisa-
tion services should use catalogues as a basis for reasoning about the operating environment—
e.g. what data is available and what facilities exist to process that data. Processing should be
planned around minimising data movement and ensuring that the facilities used are sufficiently
powerful to provide results in a timely fashion.

Processing Processing tools and services provide one of the key types of building block of an inves-
tigation workflow (the others being datasets and execution resources). Persistent services are
generally integrated into pre-configured e-infrastructure; any authorised investigator can make
use of them, sending any input data and retrieving the results. Otherwise, processing elements
need to be retrieved from some repository and hosted on e-infrastructure provided by another
source—for example deployed onto virtual resources provisioned on some Cloud. Optimisation
with respect to processing is therefore most concerned with identifying the available processing
elements or services, and either:

e Determining how best to stage in and out data in relation to existing process deployments
(especially in the case of online services).
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e Determining how best to deploy processes on available e-infrastructure based on processing
requirements and existing data placement (especially for setting up customised processing
pipelines for large datasets curated by e-Rls).

There two approaches are often both complementary and mutually dependent. Given data,
an investigator can process them on their own compute resources (ranging from a laptop or
desktop to a private compute cluster), transfer the data onto a dedicated resource (such as a
supercomputer for which they have leased time and capacity, cloud infrastructure provisioned
for the purpose, or an online web service), or direct processing of the data on-site (generally
only possible where the investigator has authority over the site in question, and generally limited
to standard analyses that are part of the aforementioned data pipeline). Each of these options
incurs some kind of cost for data movement, data preparation, and process configuration. Any
of these costs could be subject to optimisation; the provisioning of tools tailored to different
kinds of (common) data processing, coupled with different cost functions (based on the priorities
of the researcher or infrastructure) should be one of the outputs of the optimisation task.

Provenance Good provenance is fundamental to optimisation—in order to be able to anticipate
how data will be used by the community, and what infrastructure elements should be able
conscripted to provide access to and processing capability over those data, it is necessary to
understand as much about the data (and the processes and models that work over the data)
as possible. Provenance data is a key element of knowledge-augmented infrastructure, and
provenance recording services are a major source and vector of the knowledge that needs to
be disseminated throughout the infrastructure in order to realise this ideal. Ensuring that the
various questions about data origins and processes can be asked and answered becomes more
challenging the greater the heterogeneity of the data being handled by the RI, and so potential
for runtime optimisation in particular will depend on the solutions provided by the provenance
task (Task 8.3) witin ENVRIplus. As far as optimisation serving provenance in and of itself is
concerned, it may also be possible to focus on the management of provenance data streams
during data processing itself, being amenable to the real-time stream processing approaches
being investigated in Section 3.

Actually realising these links with these topics in the context of the parallel tasks in ENVRIplus
requires some degree of collaboration between task teams, possibly best implemented via instances
of shared participation by partners in the project. The existence of specific use-cases® identified
within the project to drive collaboration and focus efforts should also assist in this effort. Critically,
the cross-cutting tasks identified earlier (conducted under the auspices of Tasks 5.2—4) should also
provide a normalising factor, ensuring that the design of all topic services are ‘reference model guided’
as stated in the project’s description of work.

2.2.2 Guidance from Reference Model

Data processing is considered to be one of the major phases of the research data lifecycle, according
to the ENVRI Reference Model. Consequently, it identifies the data processing subsystem as a core
part in (most) Rls, with its own dedicated community of agents and its own set of core behaviours.
These behaviours can be decomposed into information actions (activities that transform or generate
new data) which must be supported by computational services. Figure 7 illustrates some of the
concepts associated with a generic process data action by the Reference Model, and in particular
shows how significant the role of computation can be for something that is, in abstract, a relatively
simple part of Rl activity. The Reference Model identifies a number of computational objects and
operations required simply to ensure access to research data, quite apart from the actual generation
and storage of results. From Figure 7, it can be seen that:

e A processing environment has to be prepared before data can even be staged.

e Any results derived from the process should themselves be recorded, either on the infrastructure
side or the client side.

Shttp://wiki.envri.eu, under ‘use cases’
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Figure 7: The ENVRI reference model identifies a number of requirements surrounding the act of
processing data.

e A dedicated service is needed to handle coordination of processes, in order to ensure tasks are
properly scheduled and processes on shared infrastructure do not interfere with one another.

Also evident in Figure 7 are the three main viewpoints used by the Reference Model to describe
concepts. Each viewpoint has a different focus:

e The science view is concerned with identifying the main (human, organisational and artificial)
actors in the Rl ecosystem, the roles they assume and the behaviours they engage in. With
regard to optimisation, the science view informs us of the data processing behaviours that an
RI should be able to support, and who is responsible for carrying those behaviours out; hence,
the roles played by optimisation services.

e The information view is concerned with the data objects associated with Rls and their oper-
ations, as well as their generation and transformation under various conditions. With regard
to optimisation, the information view informs us of the data objects available within the RI at
various stages in the research data lifecycle; hence, where optimisation services can extract and
implant useful information.

e The computational view is concerned with the logical distribution of processes between com-
putational elements, identifying necessary service objects and their interfaces. With regard
to optimisation, the computational view informs us of the computational services involved
in various operations; hence, which services are either subsumed by optimisation services, or
augmented by them.

Examining the archetypes defined in the science view, optimisation of the sort we are concerned with
here is primarily carried out by non-human actors, principally as part of the data processing subsystem
of an RI. Most roles of import are members of the data processing community:

e Data provider and Service consumer represent data sources and either researchers or down-
stream workflow processes respectively. Optimal placement of data and services depends on
the relative (network) locations of the providers and consumers.

e Services represent the processing blocks of a workflow, and either represent optimisation services
themselves, or are the objects of optimisation activity in and of themselves.

e Service registry is a role fulfilled by the kinds of service catalogue needed for discovery of
services and promoted by the model architecture work of Task 5.4.

e Processing environment planner represents the collective role of the kind of optimisation services
that Task 7.2 seeks to produce; microservices for guiding the customisation of the environment
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(specifically the e-infrastructure on which processes are executed and data is staged).

In the information view, any instance of persistent data may be used in data processing, but optimi-
sation services themselves will generally be guided by:

e Specifications of investigation design that define the characteristics of interactions with re-
search infrastructure. The current Reference Model emphasises investigation design for data
acquisition, but such formalisation is also relevant for any scientific investigation requiring data
processing.

e Conceptual models that define the vocabulary for specifications of datasets, services, workflows,
etc. Formal models are necessary for encoding the information needed by knowledge-driven
services.

e Metadata, metadata catalogues and data provenance that provide contextual data, vital for
optimisation.

e Service descriptions that identify the functionality of services, whether for optimisation or for
use in an optimised application workflow.

Optimisation services may be applicable to any number of information actions, including to store
data, publish data, query data and of course process data. Optimisation services rely on certain
other actions such as perform mapping (to interpret between abstract investigation requirements and
low-level infrastructure requirements) and track provenance (to acquire contextual information about
the operating environment to guide services).

In the computational view, optimisation is triggered by the invocation of processing via some virtual
laboratory (i.e. a virtual research environment or other scientific gateway), requiring the use of:

e A coordination service to manage a process or set of processes. A coordination service can
invoke any number of optimisation microservices to help customise the underlying infrastructure
and aid process orchestration.

e Process controllers to run individual processes or processing elements. The configuration of
process controllers (and their underlying infrastructure) is something we want optimisation
services to address.

e A data transfer service to coordinate the staging and recording of data via any number of data
store controllers. Data movement remains a critical concern for data processing in general, in
many cases posing a more significant obstacle than the requirements of the actual processing.
Any optimisation must be carried out based on the limitations and costs of data transmission
and staging.

Optimisation microservices themselves will likely collectively make up part of an Rl's coordination
service(s) and process controllers (the services themselves operating slightly below the level of detail
defined in the current version of the Reference Model).

As with all the development tasks in ENVRIplus, while the reference model provides some guidance
for the development and some standard conceptual vocabulary, there is still ample opportunity to
deliver feedback to the reference model team (in Task 5.2) in order to expand and refine the model.
In the case of Task 7.2, more detail can be imprinted into the computational view in particular to
identify the specific interactions between computational objects that optimisation can (even should)
target. There is also potential to influence the at present undeveloped engineering view, which
pertains to the hosting of computational services across an Rl; from the reference model perspective,
the optimisation services described in Section 2.3 essentially focus on matching computational objects
for dynamic applications to the best engineering objects.

2.2.3 Semantic modelling requirements

In order to model and characterise research applications and Rl capabilities, it is intended to enlist
the semantic linking framework of Task 5.3 for decision making and support. The semantic linking
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Figure 8: The idea of the semantic linking activity is to use the ENVRI Reference Model as a hub
for linking a wide range of standards, many of which describe entities required for smart optimisation
services.

framework for ENVRIplus is part of Open Information Linking for Environmental research infrastruc-
tures (OIL-E)”. The semantic linking framework formally encodes the ENVRI reference model (RM)
as an ontology, and is intended to provide a means to relate various research and technology stan-
dards applicable to environmental science research together in terms of that model, as well as provide
guidance for mapping between standards. At a very basic level, it should be possible to describe
many research activities in terms of behaviours and processes defined by the reference model, and it
should be possible to make statements about the computational services needed by such activities
and underlying (virtual) resources hosting those services. More generally however, OIL-E is supposed
to develop links to a range of different controlled vocabularies addressing a number of facets of
environmental science research, computation and data analysis, as illustrated in Figure 8. In the
context of Task 7.2, we are interested in the controlled vocabularies necessary to describe data dis-
covery, delivery and processing from the investigation level down to the infrastructure level. Formal
descriptions of such form the essential basis for automated reasoning, and thus the (semi-)automated
optimisation of research infrastructure in response to specific data-driven investigations.

One of the goals of the semantic linking work in ENVRIplus is to help realise a model of application-
infrastructure co-programming and control for running data-driven investigations using research in-
frastructure. This model should bring together investigation design, e-infrastructure customisation,
and runtime control of processes into one optimisation loop based on investigator requirements and
the state of the research environment. In this model:

1. The application logic (i.e. the composition of processes needed to carry out a data-driven
investigation) should be programmed with consideration for performance requirements together
with the programmability and controllability of the underlying e-infrastructure environment.
In that way, it should be possible to refine both the investigation and the virtual runtime
environment for executing investigation processes together during the design phase of the
investigation lifecycle.

"http://oil-e.net/
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2. The virtual runtime environment can be customised to address application requirements, and
can then be provisioned on an e-infrastructure environment with SLAs oriented towards specific
investigation requirements.

3. It should be possible to monitor the state of the application at runtime.

4. The application should be able to autonomously adapt its own behaviour and that of the virtual
runtime environment when performance drops during runtime, for example by scaling up or out
virtual resources in response to workload.

Semantic linking helps to realise this model by providing a framework for describing investigations,
data, tools, facilities, infrastructure and other elements of the research environment, and a method-
ology for efficiently translating requirements between such descriptions. It is not expected that
mappings to and from every commonly used standard will be created within the context of Task
5.3, but it is expected that a certain proof-of-concept will be created and recommendations made.
In particular, it is hoped that from Task 5.3, a means to translate quality of service requirements
on research processes into constraints on e-infrastructure selection and customisation will be deliv-
ered that can be used as a means to generate contextual information required to guide optimisation
microservices (and indeed data processing services in general).

At the core of the semantic linking model is the ENVRI Reference Model ontology, which can be
used to generally classify all the main components of an Rl and its research, data and computational
elements. Also needed is a means to describe a research application workflow, its requirements, and
a customised infrastructure. If application requirements can be translated into infrastructure con-
straints, then this information can be stored alongside application information in a suitable knowledge
base and then directly used by microservices to optimise the use of e-infrastructure, e.g. to better
select virtual resources, to better select their location, or to better configure the deployment of
processes. We can break down some of the key knowledge products as follows:

e An investigation design is a specification of intent on the part of an investigator detailing the
questions they are attempting to answer via their interaction with research infrastructure. At
this time such investigation design is typically not formalised in any ‘machine-readable’ sense, or
even provided to the research environment, the researcher instead immediately proceeding with
defining the necessary task workflow or just interacting with the required services directly. Nev-
ertheless, there are clear advantages to being able to specify (parts of) an investigation design
within a virtual research environment—for example to allow the VRE to autonomously identify
the resources necessary to answer given research questions without the investigator needing to
be aware of exactly what is available, to guide discovery services, to identify requirements on
services, or to partially automate the construction of an application workflow.

e An application workflow describes the configuration of services and resources that will be
used to realise a particular data-driven investigation. The notion of workflow captures the
dependencies between different parts of a research investigation and can be used to manage
the transportation of data between services and the customisation of infrastructure to host
data processing. In particular, the workflow is key to any automation of interaction between
different research support environments; otherwise the investigator themselves must broker all
such interactions.

e An infrastructure specification describes a specific customisation of e-infrastructure to serve
a particular research investigation. In practice, this encompasses the conscription of virtual
machines, HPC resources and online services to manage the workload of the investigation, and
may be defined on an immediate or longer term basis. In advanced cases, the configuration
of the underlying network may be specified (e.g. realised using software-defined networking),
especially for larger scale investigations.

e A control profile describes the specific actions that can be taken against an active application
workflow during its execution and their accompanying interfaces. In the basic case, this amounts
to the ability to start and stop specific processes, but in more advanced cases there may be
more elaborate options for computational steering, including the migration of processes and
virtual machines, the calibration of runtime monitoring, and the modification of experiment
parameters.
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Figure 9: Vertical optimisation requires the ability to define investigations and percolate requirements
down to infrastructure level—requiring semantic linking of various standards guided by the ENVRI
Reference Model.

As illustrated in Figure 9, the Reference Model describes a number of the key concepts needed
to describe these entities, but specific standards need to be linked to these concepts in order to
actually describe them properly. Standards such as WS-BPEL? for describing (Web service) workflows,
TOSCA?® for describing applications on Cloud, INDL [10] for describing virtual infrastructure and
OCCI* for describing APIs for interacting with such infrastructure are possible candidates. It is
difficult however to identify existing standards that perfectly meet our needs, and a balance must
be struck between re-using existing work, and adapting it to purpose (which carries a commensurate
cost in development effort).

2.2.4 Real-time concerns

While speed is often a desirable quality of application execution, several research applications are
subject to stricter or more subtle real-time constraints either directly attributed to the application
itself (e.g. for event detection and forecasting) or indirectly attributed via the requirements of the
supporting infrastructure (e.g. execution steering and failure recovery). Timeliness is a crucial factor
in several application scenarios. For example, disaster warning systems rely on rapid event detection
based on continuously updated forecast models. Data acquisition from sensor networks relies on
real-time processing and quality checking of new data in order to provide frequent updates to in-
vestigators on schedule. The steering of applications at runtime requires agile infrastructure capable
of responding to adaptation requests and performance variations at any time. Enabling time-critical
applications on elastic infrastructure is still a challenge in many research environments however. The
optimal assignment of (virtual) resources to individual tasks and processes, and the efficient schedul-
ing of activity, pose a direct tension with the need to build in additional tolerances for performance
fluctuations that otherwise risk violation of time-critical constraints.

A time-critical application is simply an application that requires the underlying infrastructure hosting
the application to operate as a real-time system in order to fulfil some real-time constraints. Superfi-
cially most applications are real-time, but we are concerned with applications that specifically impose
time constraints on their own execution, either due to deadlines on their output, or the cumulative
effects of delays upon a processing pipeline that handles real-time data.

Real-time requirements on research infrastructure differ—e.g. parallelising computing tasks to min-
imise execution time versus optimising network communication to limit data latency versus simulating
physical systems based on ‘wall clock time'. Figure 10 identifies some of the main types of time-critical
application. Of particular notice is the distinction between real-time and speed-critical applications,

8https://www.oasis-open.org/committees/wsbpel /
https://www.oasis-open.org/committees/tosca/
Ohttp://occi-wg.org/
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Figure 10: Time-critical applications can be categorised based on the nature of their real-time re-
quirements.

whereby the latter is concerned primarily with simply completing computation as fast as possible,
while the former is concerned with responsiveness to events. Similarly, there is a distinction often
upheld between pure real-time applications and near real-time applications; the main distinction being
that near real-time applications have a minimum latency that should generally be upheld in order to
properly ‘pace’ a larger processing pipeline (i.e. not overload interstitial buffers by completing tasks
too fast). There is also a distinction between hard, firm and soft constraints on both real-time and
near real-time applications [14]. Essentially, failure to meet a hard deadline constraint results in failure
of the entire application, while failure to meet a soft constraint merely results in a degradation of the
user experience. A firm deadline constraint represents a softer constraint that is acceptable to fail to
meet occasionally, but will ultimately result in a failed system if failed too many times. In practice,
most data processing pipelines have firm real-time constraints; the failure to meet a deadline is not
instantly disastrous, but will place pressure on the entire real-time system due to the need to ‘catch
up’ to prevent a cascading delay.

In general however, researchers do not explicitly frame their requirements of Rl services in the manner
just described. Instead, they are principally concerned with their own experience interacting with the
RI from the outside. Similarly, even RI engineers are less concerned with the specific characteristics
of particular applications, and more with the cumulative effect on the running of the infrastructure
as a whole and the efficient use of (possibly quite expensive) underlying resources from data storage,
transmission and processing. Therefore it is important to explore ways to model the abstract re-
quirements on research activities in such a way as they can be translated into more specific real-time
requirements on resources and processes as just described above. Hence why the semantic modelling
of infrastructure by Task 5.3 is important to the optimisation task, so gaining attention in the Task
7.2 roadmap (in Section 4).

2.3 Vertical optimisation of research support environments

‘Vertical optimisation’ is concerned with how information flows between different technical layers so
that each layer can be configured with regard to information provided by the other layers, rather than
treating each layer as an isolated system. The ENVRI reference model identifies the ‘customisation of
processing environments’ as a behaviour of an Rl system, and this customisation requires knowledge
of the kinds of investigation being carried out using RI resources, the location and state of different
resources, and their relationship with the underlying e-infrastructure.

One of the most pressing concerns for large-scale data processing (and thus the customisation of
processing environments) is the relative placement of data and processes. This concern is often
articulated in the form of a dichotomy: do we move the data to the process, or the process to the
data? This is a simplification of course; in a multi-stage research investigation it is necessary to
configure the staging of interim datasets and processes to optimise the workflow as a whole, and it is
also important to consider the set of all concurrent investigations in order to better optimise overall

19



infrastructure performance.
Moving data to processes has advantages and disadvantages. For example:

e There is no need to provide and maintain additional processing capacity at the data source; the
data provider can concentrate on ensuring availability, supporting discovery, and performing
any necessary curation activities behind the scenes.

e Specialised facilities for high performance or high throughout computing can be conscripted
for intensive processes, rather than limiting computation based on facilities local to the data
source.

e For large datasets, the movement of data from source to computational platform can prove
prohibitive; often network bandwidth becomes the primary bottleneck for research, rather than
computing capacity or the degree of innovation exhibited by the research investigation at hand.

Conversely, moving processes to data offers its own advantages and disadvantages:
e Data transfer is minimised, allowing processes to be quickly and efficiently executed.

e Processing is limited within the capabilities offered by the local computing platform provided
alongside the data.

e Processes must be limited or otherwise sandboxed to prevent destructive behaviours or simply
to ensure compatibility with the technologies deployed at the source. The execution of arbitrary
code for processing data is almost never acceptable to the data source.

Virtualisation provides a layer of insulation for processing that permits arbitrary deployments of tools
and code to be executed on a common computing platform. The provision of cloud services for
deploying virtual machines on which to run processes in principal allows for code to be brought
closer to the data, and addresses some of the disadvantages of allowing investigators to ‘bring their
own code’ and run it on a public facility. This does not remove the need to stage data however;
it is unlikely that dedicated data providers in the environmental science domain will start acting
as cloud providers in general. It is however likely that intermediary e-infrastructures with links to
major research network backbones will provide such a service, and that the cost of moving data to
those intermediaries will provide more efficient than moving entire datasets to an investigator's local
machine. It should also be noted that increasingly such service providers will host replicas of major
scientific datasets of interest, meaning that the data staging will already have been handled on behalf
of a community of researchers in advance.

It is especially important that optimisation of e-infrastructure, both the provision of resources and the
staging of data, be conducted from a community perspective rather than at the behest of individual
researchers. It is possible, and feasible, that certain core datasets provided by Rls can be identified
and staged on e-infrastructure services in anticipation of their use by a community, thus reducing the
data delivery costs for a entire class of research investigation, and reducing congestion at the point
of origin at the RIs’ core facilities. The key facilities can then dedicate more of their resources to
identification, curation, cataloguing and the handling of more specialised requests, and simply push
the ‘bulk common data’ to the generic data centres and e-infrastructure providers exemplified by
EUDAT and EGI.

Optimisation services can ensure that the e-infrastructure topologies used for specific investigations
or applications best match the characteristics of the data and processes needed; this is especially
doable for virtualised infrastructure, where virtual machines can be set up anywhere within a Cloud
or Cloud federation. Ultimately though, it is necessary to improve the richness of metadata and other
contextual information present within research environments to provide the inputs needed by such
services to operate in more complex circumstances.

2.3.1 Research environments and the investigation lifecycle
We can identify three main classes of computational research environment that have drawn the

attention of research communities in recent years: research infrastructures (Rls or e-Rls), virtual
research environments (VREs) and e-infrastructures. The boundaries between these classes are not
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entirely distinct, but do nevertheless represent differing foci (and to a certain extent, an incremental
evolution of the understanding of the needs of researchers): provision of research assets, development
of better ‘data-scopes’ for navigating those assets, and providing the necessary resources to make full
use of them. In more detail:

Research infrastructure Computational research infrastructures (e-Rls) are conglomerations of re-
search infrastructure that are specifically concerned with curating and ensuring the availability
of research data or other research assets that are of value to a research community. Basically,
they provide the key elements of the workflows required to conduct a particular family of re-
search investigation. In many cases, ‘e-RI" and 'RI' (representing a research infrastructure as
a discrete initiative or organisation) can be used (and is used) interchangeably. An Rl in the
general sense encompasses more than merely information technology related aspects however,
whereas the use of e-Rl specifically focuses on the computational, data and communication
infrastructure within an RI. The use of research data infrastructure within the research envi-
ronment can be brokered through virtual research environments, which act as aggregators and
gatekeepers for access to research assets. e-Rls usually provide their own interfaces for inter-
acting with their assets as well however, often integrated into a single scientific gateway, which
itself can constitute a VRE. An e-Rl itself is built upon technical services provided internally
within an Rl initiative, or enlisted from one or more generic e-infrastructure platforms.

Virtual research environments VREs act as gatekeepers for scientific exploration, providing the
means to navigate research infrastructure. They do this by providing a unified ‘data-scope’ for
researchers in the form of a portal or workbench for discovery and access of research assets
(data, models, services and resources). They may also provide the means to translate an
explicit specification of an investigator's goals and methodology into a concrete experimental
workflow consisting of a series of actions to be taken manually or automatically. VREs typically
provide graphical environments with which users can interact, access to workflow management
systems, and access to data analytics.

e-Infrastructures e-Infrastructures focus on management of the service lifecycle of computing, stor-
age and network resources provided for the hosting of Rl assets and specific processes requested
by investigators. A research infrastructure may provide its own internal e-infrastructure, but in
practice typically relies on resources provided by research institutes and dedicated data centres.
e-Infrastructures can also be presented as generic platforms for computational research, made
available to the broader research community more directly. e-Infrastructures may provide ser-
vices directly to Rls, for example to preserve a portion of their accumulated data or catalogues,
or to provide compute for specific data processing tasks, which may or may not be brokered
by Rls on behalf of investigators. e-Infrastructure resources are often provided subject to some
kind of service-level agreement (SLA), often informally, though more formal agreements are
likely to be needed as the computational research landscape develops further.

The association between these environments is illustrated in Figure 11. The use of e-Rls can be
brokered through VREs, which acts as aggregators and gatekeepers for access to research assets. The
research infrastructure itself is built upon technical services provided by underlying e-infrastructure
platforms, which may be as simple as a few servers installed in a basement, or as complex as a
distributed network of virtualised resources collectively provided by a federation of specialist data
centres and public institutions.

The ENVRI Reference Model defines the research data lifecycle: five phases of data acquisition,
curation, publishing, processing and use, representing how scientific data is handled and exploited at
various times, ultimately leading to the gathering of fresh data to support new investigations. We
can likewise define another lifecycle for computational investigation which should be supported by
Rls: three phases of investigation design, deployment and adaptation, representing the construction
and execution of such investigations on computational research infrastructure (see Figure 12).

e Design concerns the specification of an investigation design, typically as some kind of workflow
of tasks or processes, that describes what an investigator is trying to do and how they intend
to do it. While to a certain extent design remains in the mind of the investigator, VREs can
potentially provide a context for formalising the stages of investigation and identifying their
requirements in terms of resources and performance. e-Rls serve to provide the research assets
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(data, models, tools, etc.) necessary to actually realise the investigation.

e Deployment concerns the provisioning of suitable infrastructure needed to carry out the stages
of a computational investigation, the invocation of services and the installation of processes on
infrastructure resources. Deployment depends on e-infrastructure, whether private, Rl-provided
or provided by an e-infrastructure ‘commons’. e-Rl services invoked by investigators directly
are essentially backed by pre-deployed e-infrastructure, but are otherwise typically the sources
of data that must be staged on other e-infrastructure in order to carry out more complex
operations.

e Adaptation concerns the steering of an on-going investigation, both in terms of the investigator
adapting their investigation to fresh results, and in terms of the adaptation of the infrastructure
in response to environmental factors such as resource load and faults. The former kind of
adaptation requires robust routes via which investigators can interact with the e-infrastructure
hosting their applications, whether those be direct (e.g. by logging into virtual machines to
make adjustments) or via some VRE. The latter kind of adaptation can be more easily contained
within the e-infrastructure hosting an application, but should be logged for traceability.

Ultimately, the experiences of the investigator during execution of their investigation informs their
future investigations, closing the cycle.

The focus of the optimisation services proposed by this deliverable is on deployment, and to a
lesser extent adaptation (particularly the autonomous adaptation of infrastructure), but to achieve
‘optimality’ any services must ultimately be informed by design (specifically the formal performance
requirements of researchers).

Specifically, we need to be able to capture and pass downstream the requirements of investigations;
it is necessary to be able to be able to formally describe the investigation workflow, including com-
ponents, dependencies and data-flows, and be able to express constraints on different compositions
of elements in the workflow. These constraints need to be translated into terms comprehensible to
optimisation services and allowed to trickle down to the optimisation services—and so it is necessary
to look into the overall architecture supporting research investigation.

2.3.2 Optimisation architecture

Optimisation microservices of the kind described here can only be effectively exploited within the
context of a well-defined supporting architecture. This supporting architecture must account for the
variability of research infrastructure and be as unintrusive as possible to realise in practice. It should
also be compliant with the architectural recommendations of Task 5.4 and the rest of the Data for
Science theme.

As articulated in D5.4, there are a number of approaches that can be taken to modularise the
components of research infrastructure architecture. The use of standard APIs and interchange formats
for data and control directives makes it easier to set up independent modules for infrastructure at
all levels of abstraction and publish their interfaces, however it is not a given that there will be a
convergence of standards in the environment science domain. Nonetheless, there are various junctures
where some degree of standardisation seems reachable.

The development and deployment of catalogues allows the range of data, tools, services and other
research assets to be explored and indexed in various contexts. Standardised metadata and program-
matic interfaces allow these catalogues to be drawn out of their immediate environments (e.g. a
specific RI), and published more broadly, allowing for cross-RI service discovery and search. From the
perspective of processing on e-infrastructure, standard interfaces also allow processing services and
modules to be implemented in a more infrastructure-agnostic way, rendering it reasonable to host
repositories of such tools that can be used in the context of multi-infrastructures.

The general ‘raising’ of tools and services out of specific e-infrastructures or e-Rls (i.e. providing
generic tools and services based on standard APIs that exist outside any specific research environment)
makes it easier to run cross-Rl investigations, because those tools and services can then be invoked
on a range of resources from more than one context, something that is impossible if they are firmly
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embedded into a specific environment. On the other hand, it must be recognised that cross-RI
investigations are not yet a standard demand by research communities, and many communities are
still struggling with the more fundamental problem of providing optimal access to the assets within
a single Rl. Thus we must be cautious about trying to be ‘too general’ and relying too heavily on
unproven (or even non-existent) standards and technologies. Accounting for these concerns, the
supporting architecture for optimisation services should ‘fall inwards’; for each kind of catalogue,
registry or repository made available via a VRE, we look for a service that exists outwith a specific e-
RI or e-infrastructure, and in the absence of such a service, we look within the e-RI or e-infrastructure
for an alternative service, sacrificing access to generic cross-RI resources in favour of ones specialised
for a given context.

The approach taken with regard to optimisation is to provide small targeted ‘microservices’ that
can perform specific operations over virtualised e-infrastructure to assist in the deployment and
execution of processes. Such operations might include the planning of customised infrastructure
for an application workflow, the provisioning of networked infrastructure across multiple sites, or the
deployment of a Map-Reduce topology on a set of virtual machines. Four broad classes of microservice
of optimising the deployment of applications on e-infrastructure have been identified:

e Planners infer what customised infrastructure best matches an investigation's requirements
based on the research assets needed and current environmental factors (e.g. resource availabil-
ity). A planner will generally plan using the information found in resource catalogues describing
the characteristics (processing, memory, network, etc.) of various resources that can be used
to host specific processes identified in the investigation workflow. Selection may be based on
process requirements, deadline constraints, or other non-functional requirements such as re-
silience or security, depending on the characteristics of the investigation. A prototype planning
service developed for a particular kind of time-critical application is described in Section 3.1.

e Provisioners actually use the infrastructure plans generated by planners in order to set up
custom infrastructures. They may also be responsible for checking and negotiating SLAs for use
of the provisioned infrastructure, should programmatic means of doing so exist. While planners
may take responsibility for the interpretation of investigation requirements and the selection of
resources, provisioners have to actually ensure that the resultant infrastructure is fully accessible
and internally connected, which may pose a particular challenge for investigations that cross
multiple sites. A prototype provisioner specialised towards provisioning virtual machines across
multiple sites is described in Section 3.2.

e Deployers are responsible for installing and initiating processes on provisioned infrastructure.
Deployers may be generic, installing pre-packaged components based on an application workflow
specification, or may be specific to certain data processing frameworks. In Sections 3.3 and 3.4,
we identify a few different systems for large-scale data processing for which custom deployers
may be useful.

e Runtime services collectively describe services for deploying and coordinating runtime agents
that can be used to monitor or control the execution of processes. Deployers may assume some
runtime responsibilities, but many of these responsibilities go beyond the scope of what would
be considered to be the role of a deployer service. While these runtime services may be provided
generically on certain e-infrastructure platforms, it may also be possible to install these services
alongside application processes as part of the investigation workflow, in which case they must
be accounted for by instances of the above three service types.

Microservices may be specific to particular e-infrastructure platforms or specific types of investigation,
or may be generic, particularly for platforms that use virtualisation and common APIs such as OCCI
or standardised application components. There is a clear lineage of dependence between the classes
of service described above, with provisioners and deployers being particularly dependent on particular
implementations of planners in order to be able to function. It is also possible that microservices can
be collectively implemented within a single service, though the use of standardised descriptions for
application workflows, infrastructure plans and service APIs make this less necessary.

Figure 13 provides a basic depiction of how the microservices fit into the overall research support
architecture. The research community engage with Rls and e-infrastructure via VREs; a well-featured
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Figure 13: Optimisation microservices are provided via repository to e-infrastructure, and can be
accessed by researchers via a VRE.

VRE provides the means to discover the research assets made available by Rls via a (possibly feder-
ated) service catalogue, and may also provide the means to compose an investigation workflow using
those identified assets. Simple requests may be brokered directly through the e-RI, but more complex
requests will require the customisation of e-infrastructure drawn from an e-infrastructure commons
(such as EGI FedCloud). Such customisation can be managed by invocation of microservices hosted
in some repository or marketplace linked to the e-infrastructure platform, and may be invoked via the
VRE directly, or by the e-infrastructure via some internal manager.

Moving to a metadata-driven intelligent infrastructure requires the deployment of a number of dif-
ferent kinds of information service.

e Metadata catalogues identify and describe datasets and other research assets in a manner
that allows them to be searched via their characteristic metadata. Application workflows are
generally built from components discovered via these catalogues.

e Service catalogues are of a subset of metadata catalogue that describe and locate services in
a range of contexts: VRE services for describing investigation workflows and navigating other
service stacks; e-Rl services for accessing and using research assets; and e-infrastructure services
for acquiring and configuring compute resources. The main processing elements of workflows
(as opposed to datasets and storage media) are drawn from this particular class of catalogue.

e Knowledge bases provide information about research infrastructure, resources or applications
at different levels of abstraction, and provide a generic means for services to acquire knowledge
about their operating environment. They also store the conceptual models used to define
metadata schemas used by datasets and harvested for catalogues. The alternative to knowledge
bases is for services to operate solely according to their internal logic based on their local
environment, or on information directly passed to them as input. The use of separate knowledge
bases allows services to operate with a global view of their operating environment, and benefit
from collective information gathering. The determination of the specific information items that
knowledge bases should gather, their distribution, and their placement, are non-trivial concerns
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that must be addressed if intelligent information infrastructure is to be realised however. For
example most e-infrastructure providers (for example EGI') maintain some form of service
catalogue that can be used by various meta-services for planning, scheduling, provisioning, etc.

e Microservice repositories actually host the optimisation microservices being discussed in this
section. There are a number of locations in which such repositories can be placed in the
architecture: they can be placed within an e-infrastructure platform (as part of its internal
marketplace, most appropriate if services are specific to that e-infrastructure); they can placed
within an e-RI (only appropriate if services are specific to e-RI services); they can be placed
within a VRE (appropriate if services are more specific to a VRE's investigation design facilities
than to the e-infrastructure on which they operate); or they can be hosted entirely externally
(ideal if the optimisation services are wholly based on standard interfaces and specifications
common to a range of both VRE and e-infrastructure services).

While optimisation microservices can be implemented to stand-alone to a certain extent, having
these additional information services present, with standard APIs, would allow the microservices to
be designed that can take advantage of an arbitrary degree of environmental knowledge. As the
information architecture present in the research environment grows, so too does the potential for new
and upgraded services.

Hhttps://www.egi.eu/services/
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3 Current development

The development focus of Task 7.2 is on the prototyping of microservices for e-infrastructure customi-
sation, and for deployment of data processing environments. In particular, there has been an initial
focus on time-critical applications—applications with deadline constraints on iterations of individual
processes. There are two services that have already been prototyped and which are planned to be
exposed to research infrastructures for demonstration and testing purposes in the near future:

e An infrastructure planner for selecting virtual resources to host applications with multiple
internal deadlines.

e An infrastructure provisioner for provisioning an infrastructure topology across multiple sites
in a transparent manner.

In addition to the development of services for planning and provisioning of infrastructure, another
major focus of development is on specific large-scale data processing tools that can quickly process
significant volumes of data on demand. The plan is to investigate some of these technologies in the
context of selected ENVRIplus pilot studies, and then later to investigate how these technologies can
be packaged so as to be more easily deployed for equivalent future investigations. The technologies
so far examined are:

e Apache Storm, a framework for distributed real-time processing of streamed data.
e Apache Cassandra, a distributed, scalable NoSQL database system.
e Apache Spark, a distributed system for analysing large datasets in-memory.

These technologies have high potential in a range of different use-cases, and so could benefit from
being provided to the wider ENVRIplus community as deployment services (as defined back in
Section 2.3.2). In this section, we describe the aforementioned development studies in more detail.

3.1 Planning of virtual infrastructures for time-critical applications

A key problem when using virtualised infrastructure for experiments and other data-driven investiga-
tions is determining the best selection and configuration of virtual resources: what services to use,
what VM images to install, how to ensure sufficient network connectivity between nodes, etc.

Typically this planning of custom infrastructure is performed manually as a collaboration between
application developers and infrastructure engineers based on their combined experience. Automation
of planning can be very useful; but different applications require different approaches based on the
class of problem and their critical requirements.

Within Task 7.2, we want to prototype planners for configuring e-infrastructure for specific
classes of data-driven investigation. In this section we discuss a particular planner prototype for
a particular kind of application—a workflow of service invocations with multiple internal response
deadline constraints. The major cost function are execution time (for service invocations), commu-
nication time (for data delivery) and resource cost (for leasing VMs; this can be monetary or some
equivalent measure such as energy consumption). This does not necessarily represent all or even a
majority of the applications of most interest in ENVRIplus, but at least provides an example of the
kind of optimisation microservice that can be prototyped over the course of the project.

Problem specification

The selection of suitable resources to support data processing depends on a strong understanding of
the type of processing needed. Some tasks are very compute-intensive, requiring access to powerful
processors and large amounts of memory. Some tasks are more |/O-intensive, requiring fast access
to storage or to other computing nodes. Some tasks are highly parallelisable, allowing the processing
burden to be split across multiple concurrent processes all hosted on different machines—and some
tasks simply need access to the most powerful machine available. There are many different kinds of
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resources based on the conditions and deadlines imposed on workflow elements.

process, and so correspondingly there are many types of resource offered by e-infrastructure providers.
As datasets have grown larger and more difficult to transport, the networking between resources has
also taken on an additional degree of importance. Thus the need for careful planning of infrastructure
provided for specific applications.

The planner described here is one that is designed to build an infrastructure topology based on
selection of virtual resources that should be able to meet multiple internal response time deadlines
at runtime, while minimising some cost function, e.g. monetary cost or power consumption (see
Figure 14). It assumes a persistent application workflow, where the constituent tasks are implemented
as services that will continue to run for the entire investigation, and thus must continue to respond
to new input under the same deadline constraints throughout that investigation's duration. We
assume that the infrastructure resources selected exhibit a stable level of performance, with a stable
‘price’ for purchasing those resources that is maintained for the entire duration of an application’s
execution. Such a planner represents only one type of planner that may be of use for executing
workflows generated to process data drawn from environmental science Rls.

Development

There exist a number of works that focus on optimal resource assignment on virtual infrastructure
under different conditions and assumptions. Yu et al. [20] propose a method to minimise the execution
cost of a workflow to satisfy a global deadline. Their method first clusters the sequential tasks that
have only one parent and child together and assigns each task with a sub-deadline based on its
minimum processing time and the sub-deadlines of its predecessor. Each task is then assigned to
the least expensive virtual machine (VM) that can meet the deadline—however, the communication
cost between tasks is not considered, nor the presence of multiple deadlines. The Infrastructure-as-a-
Service Cloud Partial Critical Paths (IC-PCP) algorithm [1] calculates partial critical paths through
the application workflow in order to schedule the deployment of tasks on the cloud in order to solve
the same problem. |C-PCP can be combined with the approach taken by [20]; after finding a partial
critical path, each task in the path is assigned a sub-deadline with the execution time in proportion to
the whole partial critical path length. The tasks in the workflow are then assigned with the cheapest
VMs that still meet these deadlines. Though originally formulated to meet a single global deadline,
support for additional internal deadlines in IC-PCP can be easily added by overriding the generated
sub-deadlines with pre-defined deadlines where the latter is more strict.

The planner we have prototyped is therefore based on the IC-PCP algorithm—however we make a
number of assumptions different from those of [1]. For one, we assume that after one task transfers its
results to all its successors, the VM where the task is deployed is not released, and instead the task will
act as a persistent service waiting for more input—thus the deadline for a given task must be satisfied
every time the task receives new input. We also make the assumption that every task in the workflow
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will be deployed on its own VM, partly for simplicity, and partly because sharing VMs impacts the
performance of tasks [2] and our focus is on time-critical applications as described in Section 2.2.4.
Most importantly however, we assume that workflows can have multiple internal deadlines on different
component processes based on the requirements of users or downstream services.

Our multi-deadline workflow planning algorithm (MEPA) uses a ‘compress-relax’ method—VM types
with best performance are assigned to tasks so that the makespan (the total execution time) is
‘compressed’ and all deadlines are met if possible, and then the assignment over the workflow is
‘relaxed’ by re-assigning to tasks less powerful VMs albeit with lower cost while preserving deadline
satisfaction. Initially MEPA assigns each task in the workflow with the best performing VM to
guarantee a basic solution; if not all deadlines can be met this way, then an alternative e-infrastructure
will be needed, or else the QoS requirements of the application will need to be somehow relaxed.
Based on the initial ‘compressed’ assignment, MEPA then calculates the earliest start time (EST),
earliest finish time (EFT) and latest finish time (LFT) for each task based on the dependencies
between tasks and necessary communication costs. MEPA then works backwards from the final tasks
of the workflow to assign the internal deadlines; if the deadline on a task is stricter than the calculated
LFT for that task, then the deadline simply replaces the LFT. If the EFT for a task exceeds its LFT,
then the currently available resources cannot satisfy the time constraints on the workflow. Once
the constraints on a critical path have been determined, it is then possible to determine the best
assignment of VM type to each node on the path.

Actual assignment of different kinds of VM to different nodes in the same workflow can be based on
brute-force calculations, or based on the use of heuristics. Convolbo and Chou [5] propose a heuristic
approach which exploits the parallel properties of the workflow to minimise execution time. Rodriguez
et al. [17] applies particle swarm optimisation, encoding within each particle a task-resource mapping.
Heterogeneous Earliest Finish Time (HEFT) has been proved to perform better than other heuristics
in robustness and schedule length [4], and Multi-Objective HEFT extends HEFT to optimise the
trade-off between monetary cost and makespan of the workflow [7], though again the communication
cost is not addressed. The critical path based iterative heuristic (CPI) [3] and multiple complete
critical paths heuristic (CPIS) [2] are used in other algorithms for solving the cloud infrastructure
planning problem within the bounds of a single deadline. Based on the calculated earliest finish
time and latest finish time of individual tasks, CPI identifies a complete critical path through the
application workflow from start to finish and assigns the tasks in the critical path to VM services. In
CPIS, a graph labelling method is applied to construct complete critical paths of the kind generated
by CPI.

In our case, VM types are assigned to the constructed partial critical path using a genetic algorithm
and a matrix of execution costs per task per VM type (which can be based on historical observation
or extrapolation). This genetic algorithm runs for a set number of generations to find the best
combination of assignments to nodes on a critical path that fulfil all deadlines. After assignment,
the tasks in the critical path are tagged as assigned and the EST, EFT and LFT of the other tasks
in the workflow are updated accordingly. Assignment of the remaining tasks will the continue until
all the tasks in the workflow are assigned.

Experimentation

To investigate the behaviour of the algorithm the graph generator GGen [6] was used to generate
random workflow topologies with internal deadline constraints. Specifically, a ‘fan-in/fan-out’ pro-
cedure was used to generate directed acyclic graphs with different numbers of vertices, maximum
in-degree per node and maximum out-degree per node. In order to test on different scales of graph,
the number of vertices in the workflows ranged from 1 to 256. The in-degree and out-degree were
used to generate different ‘shapes’ of workflow, with the in-degree and out-degree ranging from 1 to
5 and 1 to 4 respectively.

For every workflow there needs to be an execution profile describing the performance of tasks on
different kinds of VM, as well as the projected communication cost between tasks. For our experi-
ments, we first generated the execution cost of the task on the ‘best’ kind of VM, randomly selecting
a response time between one and half of the communication cost upper bound; this ensured that
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the relative scale of execution and communication costs with respect to one another is varied across
workflows. The execution costs of the task on the other ‘lesser’ services were generated iteratively
by increasing the previously generated cost by a random amount, and a random value was assigned
to the communication cost between workflow nodes.

The time constraints attached to a workflow were also randomly generated. The number of time
constraints were set in proportion to the scale of the workflow—approximately 10% of the number
of tasks in the workflow. Each deadline was then attached to a task in the workflow based on the
critical path calculation performed during workflow generation, limiting each deadlines range based
on best and worst performing VM services so as to ensure no ‘impossible’ deadlines are set.

Our implementation of MEPA was based on Python 2.7.10, using NetworkX (version 1.10)!? to
manage the workflow and PyDOT2 (version 1.0.33)!3 to parse the graphs generated by GGen. We
used DEAP (Distributed Evolutionary Algorithms in Python) [8] as the underlying framework for
implementing the genetic algorithm for assigning VM types to tasks on critical paths. Experiments
were conducted on the Distributed ASCI Supercomputer 5 (DAS-5).

A number of different performance experiments were carried out, including comparison of path as-
signment with IC-PCP and with our genetic algorithm; comparison of IC-PCP, CPl and MEPA to
meet a single global deadline; and comparison of (a minimally modified) IC-PCP and MEPA to meet
multiple deadlines. In the third experiment, |IC-PCP was minimally augmented to support multiple
deadlines, but retains the restriction of selecting a single VM type for all nodes, compared with
MEPA's ability to mix VM types for different tasks. The full results have been submitted for publi-
cation in a forthcoming journal, but in essence show that MEPA consistently provides less expensive
VM assignments than IC-PCP and produces results in line with CPI with greater scalability (due to
lesser calculation complexity). Further experiments should focus on relaxing some of the assumptions
made by MEPA in order to be applicable to wider range of time-critical application.

Integration into ENVRIplus

The planning algorithm detailed above shows some promise for a particular class of data-driven
investigation—for example, the processing of data streams within a distributed pipeline that requires
each major stage of processing to be carried out within a specific time window.

A RESTful service is being developed that can provide planning based on an e-infrastructure service
catalogue for an abstract application topology with performance constraints. It is hoped that this
kind of service can be deployed within e-infrastructures such as EGI for general use.

However, this planner is very limited in the range of applications it can support. To be truly useful
to the ENVRIplus community, it will need to be either extended in its support for different kinds of
constraint (time-critical or otherwise), or it should only be used as a starting point, with alternate
planners provided exploring other classes of data processing problem.

3.2 Provisioning of virtual infrastructure across multiple sites

The manual provisioning of e-infrastructure resources for a given research application can be a difficult
task for researchers, often requiring engineers knowledgeable about the target e-infrastructure to act
on their behalf. The use of virtualised infrastructure, where the actual composition and configuration
of physical resources is abstracted aside in favour of virtual machines (VMs) that users can configure
freely, reduces this difficulty, but further automating the provisioning process can save even more
time and effort, increasing the effective use of e-infrastructure by a research community accordingly.

Within Task 7.2, we want to examine provisioners for setting up networked virtual infrastructure
for hosting data processing workflows. In this section we discuss a prototype provisioner for
provisioning virtual machines in multiple locales in parallel that can ensure the network connectivity

2https://networkx.github.io/

Bhttps://pypi.python.org/pypi/pydot2/1.0.33
“http://www.cs.vu.nl/das5/
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Figure 15: Investigation workflows hosted on e-infrastructure may be provisioned across multiple sites
in order to minimise data transfer costs and to take advantage of local compute facilities.

between components in multiple locales. This scenario is of interest in many cases, such as where there
is need to cache datasets being distributed between different data centres or research infrastructures
in such a way that data movement is minimised while ensuring that all data remains accessible, or
where there is need for dedicated processing facilities only available at certain sites, but where those
sites cannot host the entire application workflow.

Problem specification

Research applications can be deployed onto networked virtual infrastructure, but the layout of the
network should be considered when planning such deployments, especially for applications that draw
upon assets from more than one data centre or computing service. There may be a tension between
different parts of the application as to where it is optimal to provision specific VMs, and hence it
is important to consider how to ‘co-provision’ resources across multiple domains or data centres in
order to minimise unnecessary data transfer and take advantage of the best available environments
for data processing tasks (see Figure 15). Such co-provisioning involves three main steps:

1. Partitioning the original topology;
2. Establishing connections between partitioned parts;
3. Co-provisioning the partitioned parts simultaneously.

Moreover, co-provisioning can, in principle, make the provisioned infrastructure much more flexible
and scalable by breaking complex infrastructure topologies into independent blocks that can be
restored individually in the event of failures or faults.

A critical issue to address is how to create a network overlay that allows the partitioned parts to
function and appear as a single topology. A co-provisioning mechanism that preserves the network
topology across multiple sites has been proposed by Zhou et al. [24], based on cooperative provi-
sioning (co-provisioning) on Clouds. An intermediary broker that exists between investigator and
e-infrastructure provider performs the necessary modification of the resource plan without requiring
extra attention from either party. This technology is now being adapted for the EGI FedCloud plat-
form, as a service for investigators wishing to host tasks on the EGI e-infrastructure. A microservice
encapsulating this technology may be of use however in a variety of contexts, as a means to accelerate
the set up of experiments on a range of different virtualised e-infrastructure platforms.
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Figure 16: Establishing connectivity between partitions using proxy nodes.

Development

Many studies have been done on the topic of fast provisioning to accelerate the process of VM
start-up in cloud environments, mostly focusing on the server (e-infrastructure) side. FVD [19]
modifies the VM image format to make the start-up process shorter, but requires the hypervisor to
be modified accordingly. SnowFlock [13] and Twinkle [25] adopt the method of directly forking from
a running virtual machine to get rid of the start-up process. Zhang et al. introduce two solutions,
VMThunder [23] and VMThunder+ [22], both of which can provision hundreds of VMs in a very
short period. They provide further optimisation on top of prior peer-to-peer methods, but still require
special configuration on the part of the e-infrastructure provider. Inter-cloud co-provisioning is another
research direction; Grozev and Buyya [11] provide a detailed survey on inter-cloud architectures and
provide a taxonomy to describe how co-provisioned resources collaborate with each other. Nelson
and Uma [16] propose an Inter-cloud Resource Provisioning System (IRPS) to describe resources
semantically and provision resources across clouds. They define a set of resource ontologies to work
with, because management policies and descriptions about resources are different for different e-
infrastructures. The target of their solutions are not applications that are particularly network-centric
however, and resources are generally provisioned without considering network performance.

Fundamentally, the partitioning of a virtual infrastructure is based on characteristics of both applica-
tion and infrastructure. Separate partitioning requests can be provisioned simultaneously, so reducing
the total overhead time for provisioning. Two possible methods have been developed to settle the
problem of connectivity between partitions. The first is to use proxy nodes specifically configured to
manage cross-partition data transfer, the second is to use IP tunnelling for such transfers.

Figure 16 illustrates how one packet is sent through the public network between two partitions using
the proxy node method. When using this method, every network link required by the infrastructure
specification that crosses between two partitions requires the creation of two proxy nodes, one in
each partition, to ‘bridge’ the gap between partitions. The role of a bridge node in a given partition
is to act as recipient for any data packet destined for the other partition and to then redirect it across
the public network to its partner node in that other partition, which will then redirect the packet
to the ‘real’ node that the packet is destined for. When partitioning a specified infrastructure, it
is necessary to determine the most efficient way to divide nodes such that the QoS requirements
of the application can be met while at the same time minimising the number of proxy node pairs
required to bridge across partitions. The necessary proxies are provisioned alongside the rest of the
nodes in their respective partitions, and are treated within each partition as if they were the nodes
on other partitions to which links are required. Upon provisioning of all partitions, these proxies are
then provided with the information about their partner nodes in the other partitions that allow them
to forward data packets across the network.

Another method to connect partitioned slices is to use IP tunnelling, as shown in Figure 17. With
the IP tunnelling technique, a data packet provided by nodes destined for another partition can
be wrapped in another packet via which the original packet can be transparently delivered over
the public network. The advantage of this method is that it does not incur the extra overhead of
establishing proxy nodes for every cross-site link, giving more flexibility to partition an infrastructure
specification in accordance with QoS requirements. IP tunnelling however is not always available in
all environments, and requires some minor re-configuration of provisioned nodes with regard to the
original infrastructure specification. In that sense, it is not quite as ‘transparent’ to the client as the
proxy node method.
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Figure 17: Establishing connectivity between partitions using IP tunnelling.

A key characteristic of this co-provisioning mechanism is that it does not require special configuration
on the part of the infrastructure provider, and preserves the virtual topology of the original infrastruc-
ture plan, rendering it transparent both to the investigator (or the VRE acting on their behalf) and
the e-infrastructure provider (which simply provides the required infrastructure resources for each
partition as if they are separate requests). An initial implementation was tested on the ExoGENI
platform®®, a networked infrastructure platform that permits configuration of the interstitial network
between virtual machines.

Experimentation

Networked Infrastructure-as-a-Service (NlaaS) requires that the network topology between VMs is
defined explicitly. Currently, most Infrastructure-as-a-Service platforms just provide VM nodes to
clients without specifying how they are connected. The performance of many data-intensive applica-
tions however is constrained by the network, so consideration of the network links becomes important.
ExoGENI uses the infrastructure and network description language (INDL) [10] to describe the topol-
ogy of clients requests. The VM nodes and links between them are all described in one ‘slice’ (a
virtual infrastructure provisioned for a specific application). In addition, ExoGENI permits clients to
specify the location of their VMs, selected from a number of sites.

Measurements were performed on ExoGENI to better characterise the provisioning problem. As shown
in [24], the provisioning overhead does not really depend on the VM type or topology as much as
it does the number of nodes in the slice. A similar conclusion is drawn by Mao and Humphrey [15]
based on measurements of public cloud providers. If we divide the slice into multiple smaller slices
and provision them in different racks or locations in parallel, the provisioning overhead of every slice
can be reduced. The strategy of the provisioner therefore is to provision cloud resources across
multiple domains, or even multiple clouds, while ensuring that all resources can still operate together
to provide a whole infrastructure as per the client’s original design.

When adopting the proxy node method, every link across partitions brings in one more proxy node
in each partition. We therefore want to minimise the need for extra nodes as much as possible given
the QoS constraints presented and the topology of the infrastructure specification. When adopting
the IP tunnelling method, the partitioning is slightly simpler due to not having to consider the impact
of additional proxies. Regardless, in order to realise an effective partitioning algorithm, we define the
weight of the VM nodes required by the infrastructure specification. As discussed, the provisioning
overhead mainly depends on the type of VM nodes provisioned and the image installed on it, and the
weight of each node should reflect this. For standardisation, we define the weight of the node with
the most basic type and image available to the source e-infrastructure(s) as being of weight one. The
weight of other nodes can be defined as multiples of this weight based on a posteriori measurements.
To make provisioning as efficient as possible, the inferred weight of the partitions should be as close
to one another as possible.

Some evaluation has been conducted in ExoGENI using the proxy node method to implement co-
provisioning. This evaluation has mainly focused on the provisioning overhead. The experiment
was designed using nodes on type ‘XOMedium' (single core, 3 GB of RAM, 25 GB of storage).

Bhttp://www.exogeni.net/
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Figure 18: Measurements of provisioning overhead for different numbers of nodes provisioned together
or in parallel partitions.

Three scenarios were investigated: ‘normal’ provisioning, inner-domain co-provisioning and inter-
domain co-provisioning. Partitioning the infrastructure into just two equally-weighted parts reduces
the provisioning overhead most. For inner-domain co-provisioning, we co-provision two partitions
with equal numbers of nodes to servers hosted in Boston. For inter-domain co-provisioning, we co-
provision the same two partitions, but with one hosted in Boston and the other in Washington. For
normal (single partition) provisioning, we measure both the overhead when provisioning the partition
with the same total number of nodes as used for the co-provisioning, and with just the number of
nodes used in a single partition in each co-provisioning case as a control experiment. Measurements
are repeated three times for every scenario and the mean average taken as the result. The results
are shown in Figure 18 for infrastructure specifications consisting of in total two, four and six nodes
in turn. The experimental results demonstrate that the overhead of the co-provisioning mechanism
is close to that of the normal provisioning overhead for half the number of nodes. They show that
parallel provisioning of partitions is faster than partitioning a single large infrastructure slice, much
as expected, and that the benefit applies even when provisioning within the same locale, at least for
ExoGENI. The results suggest that co-provisioning becomes more efficient as the number of nodes
increases.

Integration into ENVRIplus

A RESTful service has been developed, packaging the above provisioning algorithm, using both
methods of maintaining an overlay network across sites. It remains to provide versions that support
the specific virtualised infrastructures that are being made available to Rls within the ENVRIplus
project.

Identifying use-cases that would make good use of this provisioner remains necessary. Determining
if there are other problems specific to infrastructure provisioning that can be solved by algorithms
encapsulated by optimisation microservices is also important. There may be potential to customise the
provisioning described here to assist with the deployment of distributed data processing environments
such as those discussed in the next two subsections.

3.3 Using Storm and Cassandra for near real-time processing of time-series data
In this (and the next) section, we describe frameworks for large-scale data processing. These frame-

works can potentially solve the problem of configuring and running data processing pipelines for a
number of different application scenarios, whether for specific data-driven investigations, or as part
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Figure 19: A storm topology defines a cluster of spouts and bolts for data emission and transformation
respectively.
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of the general data analysis cycle used by Rls to package and propagate their key research data
products.

One of the things we wish to do in Task 7.2 is to build deployment services for automatically
configuring distributed data processing pipelines. To do this, we need to identify existing tech-
nologies that are robust and easy to use, and then identify where we can package the deployment of
those technologies as a service, minimising the need to build anew for every potential research data
application. First, however, we need to analyse the potential of the candidate technologies, starting
with Apache Storm and Cassandra.

Apache Storm

Apache Storm?® is an interesting distributed computation system for real-time processing of streamed
data of the sort curated by Rls. The free and open source Apache Software Foundation project is
designed to “reliably process unbounded streams of data, doing for real-time processing what Hadoop
did for batch processing”. Apache Storm excels at real-time analytics, online machine learning,
continuous computation and similar use cases.

The notion of a topology is a core Storm concept. A Storm application is a topology that runs
forever, unless terminated. The structure of a Storm topology is a directed acyclic graph, consisting
of vertices and edges as illustrated in Figure 19. Directed edges are streams, unbounded sequences
of tuples. Tuples are data elements of primitive or user-defined data types. There exist two types
of vertex: spouts and bolts. Spouts are sources of streams; they generate tuples. In contrast, Bolts
transform streams; they perform operations on tuples.

In the context of ENVRIplus, Apache Storm is a promising tool for processing streamed data in real-
time in an efficient manner. Data acquired by Rls from sensors, sensor networks, or observatories are
delivered as streamed data, and Rls may want to perform computational operations on such streamed
data prior to persistence. An example for such online computation may be transformations in data
encoding and format, e.g. from binary encoded data to O&M-compliant encoding of observations [12].
Another example is the online annotation of observation streams designed to enrich observations
with contextual metadata, e.g. information regarding time and space or other observed properties. A
special case of such annotation is online quality control where streamed observations are annotated
with a quality flag.

As sensing devices, and entire networks or observatories hosting such devices, generate observational
data in a streamed fashion, i.e. until terminated, the Storm spout serves as a good abstraction for
such infrastructure. Using this abstraction, instruments merely emit tuples that can be handled
directly by a topology. A complex online real-time processing task can thus be broken down into
simple tasks, each implemented by a Storm bolt. Bolts can then be assembled in a topology that
implements the complete task.

Bhttp://storm.apache.org/
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Figure 20: A Storm topology can be used to perform near real-time quality checking on sensor data
streams.

Apache Storm can be configured to distribute the processing of streamed data on a cluster of ma-
chines. Collaboration has already been started with EGI to investigate how to deploy and execute
Storm applications on EGI e-infrastructure. Within this context, EGI has been successful in setting
up a Storm cluster consisting of three machines with an agreed access policy. As a next step, the
execution of a simple Storm application will be tested. These steps are in preparation for the imple-
mentation, deployment and execution of a more complex Storm application designed to support the
real-time acquisition and harmonisation of data from sensing devices, and the execution of real-time
quality control routines on standardized observation data.

The details relevant for this Storm application are being developed as part of an ENVRIplus im-
plementation case 1C_1417, illustrated by Figure 20. The aim of the implementation case is to
investigate the possibility of shifting the data and metadata standardisation level closer to sensing
devices so that transmitted data are encoded and formatted following international standards from
the outset, using standards such as OGC Sensor Web Enablement!® or the W3C Semantic Sensor
Network (SSN) ontology'®. Given such standardised transmission of sensor data and metadata, the
implementation case aims at demonstrating the implementation of quality control routines that are
common to ENVRIplus Rls. Hence, the IC attempts to demonstrate the re-use of quality control
routine implementations across Rls. We expect that such re-use is facilitated by the standardisation
of encoding and formatting of transmitted observational data.

Apache Cassandra

Apache Cassandra®® is another potentially interesting system for persistence and retrieval of time-
series data in Rls. The free and open source Apache Software Foundation project is a scalable,
fault-tolerant, and decentralized NoSQL database system.

The Cassandra data model is interesting for sensor network based Rls as it can be designed to support
the management of time-series data. Being a so-called “column store”, Cassandra can not only order
time-series data in rows but also in columns. Cassandra can hold up to 2 billion columns per row. It
thus provides a compact representation of time-series data.

Persistence and retrieval of data in Cassandra relies on so-called row and column keys, i.e. references
for the row and its column at which data is persisted or from which data is retrieved. A simple
data model for sensor data may utilise the device identifier for row key and time for column key.
Given time-ordered columns and a query for device identifier and a time interval, retrieving the series
matching the query is thus a cheap operation in Cassandra.

Stocker et al. [18] have compared a system, called Emrooz, built on Apache Cassandra designed to
persist and retrieve observational data represented according to the SSN ontology in RDF?! with
two other state-of-the-art RDF database systems. The study suggests that Emrooz outperforms

https://confluence.egi.eu/x/a6N3es+of+GHGs
18http://www.opengeospatial.org/projects/groups/sensorwebdwg
Ohttps://www.w3.org/ TR /vocab-ssn/

2Ohttp: //cassandra.apache.org/

2Lhttps:/ /www.w3.org/RDF/
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the compared systems in load performance of streamed observational data over time and has query
performance independent of time-series length (size of data). The latter is a remarkable result, though
easily explained by the fact that given the sensing attributes (i.e. sensing device, observed property
and feature) and a time interval, Emrooz can efficiently retrieve the relevant data by addressing the
corresponding Cassandra row and column keys. In contrast, RDF database systems need to evaluate
the complex and expensive joins of a SSN observation query.

While the comparative study on RDF database systems is interesting, in ENVRIplus it may be useful
to compare the load and query performance of Apache Cassandra with classical relational database
management systems, such as PostgreSQL and MySQL. We plan to perform such an evaluation using
data from the Euro-Argo RI provided by Ifremer.

Integration into ENVRIplus

Investigations proceed into both Storm and Cassandra, primarily driven within the project by the
IC_14 implementation case. If the results of the use-case are positive, and it is deemed practical to
standardise the process of deploying these technologies onto a standard e-infrastructure such as EGI,
then there will be further investigation into the creation of dedicated microservice for (assisting with)
deploying them onto that e-infrastructure.

3.4 Using Spark to query data as part of a data subscription service

Parallel to the investigation of Storm and Cassandra, experimentation has proceeded in using Apache
Spark for handling fast data querying of a dataset.

Apache Spark

Similarly to various other scientific domains, the marine domain produces extensive amounts of
research data that need to be stored and analysed. There are a number of technical platforms aiming
to provide user-friendly access and functionality to the data throughout the whole data lifecycle. In
particular, data analysis tools and platforms have been built that aim to provide scalable, efficient,
and fault-tolerant operations over large distributed datasets.

Apache Spark®? is an open-source, distributed system for analysing massive datasets through the use
of in-memory computing. At its core is a scheduler/execution engine that organises operations across
a number of worker nodes in a fault-tolerant and efficient way.

There are two types of operations: transformations and actions. Transformations define and create
data structures known as Resilient Distributed Datasets (RDD) [21] and evaluate them lazily; only
when an action operation is called is a possible chain of transformations executed and the action
returns a value to the Spark application. There are several Spark modules which build on top of the
core:

e The SQL module allows querying of structured data using the SQL query language.

e The Streaming module allows applications to process both streaming and historical data using
the same execution engine.

e The MLIib module for machine learning provides various iterative machine learning algorithms.
e The GraphX module is a graph structured data analysis library.

One of the benefits of Apache Spark is that a variety of different analysis cases can be run through
the same execution engine, which allows better performance and fault tolerance for example when
graph data is combined with unstructured or tabular data.

There at least four aspects through which Apache Spark achieves fault tolerance and efficiency:

22http://spark.apache.org/
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# | Nodes Cores/ | Memory/ | Node type Storage Storage
(41 master) | node node size
1 |4+1 8 35 GB 1/0 intensive, | HDFS, 3 replicas; 16 GB
SDD Parquet, 100 partitions
2 8+1 16 78 GB 1/0O intensive, | HDFS, 3 replicas; 5TB
SDD Parquet, 100 partitions

Table 1: Cluster configurations used for experimenting with Apache Spark.

Granularity of transformations The same low granularity transformations are applied many times
on immutable data (in contrast to fine-grained updates to mutable states).

Data immutability Transformations are logged to provide data lineage, e.g. a lost partition of RDD
can be derived from other RDDs by just recomputing that partition.

Data caching and partitioning in-memory Data access and movement costs are reduced by pre-
serving transformations and keeping operations within memory rather than continuously touch-
ing storage.

Data locality Reducing data transmission and ensuring data availability.

Each Spark application can be run as a separate Hadoop YARN?3 or Apache Mesos?* application,
containing the master and workers, and each application shares resources with each other. As part of
the investigation into a data subscription service for Euro-Argo data (one of the ENVRIplus technical
use cases), two cluster configurations on top of OpenStack? were set up in order to investigate the
potential of Apache Spark as the system for executing subscribed queries, as defined by Table 1.
I/O intensive nodes were set up to give the best |/O performance on the virtual machine root and
ephemeral disks, backed by local SSDs on the servers they ran on. The SSDs were configured in a
RAID-0 configuration for maximal performance, which means an increased risk of loss of a node in
case of hardware problems, but which may be compensated for by additional mirroring in the data
subscription case. An anti-affinity policy was used to ensure that each node instance was run on a
different host, again for performance reasons.

Two datasets were used in the experiments: first, a partial dataset representing June 2015 data; and
second, a full dataset. The data was downloaded via FTP?%. The Jun 2015 dataset size in Parquet®”
format was about 205 MB in size with 46 million entries, while the full data set in Parquet format
was about 16 GB in size with around 4.2 billion entries.

For the first cluster configuration, the full dataset was queried; Table 2 shows the executed queries
and the measured query time. Because only Spark versions above 2.0 include nested SQL query
functionality and at the time of experimentation only a lesser version was available, more complex
queries had to be implemented using additional look-ups, joining the results (necessary for query 8
in Table 2).

For the second cluster configuration, Table 3 shows the executed queries and measured query times.
The second subset of queries (queries 2a—2d) were implemented through the use of Spark transfor-
mations and actions. The queries shown in this table were those demonstrated during the 3rd ENVRI
week (November 2016).

The measurement of each query includes time to read data from HDFS/Parquet, to process the
query, and to write result data to HDFS in CSV format. For the full dataset, each measurement
was repeated 20 times, with the exception of query 1c, which was only run 19 times, and query la
(extracting the entire dataset), which was not practical to run in this context. Average time, median
time and standard deviation (o) were derived for each measurement set. For each repetition, a new

2http://hadoop.apache.org/

24http://mesos.apache.org/

Zhttps:/ /www.openstack.org/software/

2ftp: / /ftp.ifremer.fr/ifremer /coriolis /co0547-bigdata-archive
2Thttp://parquet.apache.org/
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# | Query Time (s)

1 | SELECT station id FROM euroargo WHERE station id = 518167231 10
2 | SELECT MAX(latitude), MIN(latitude), MAX(longitude), MIN(longitude) FROM 40
euroargo

3 | SELECT SUM(parameter value) FROM euroargo WHERE parameter code = 146 22

4 | SELECT station id, SUM(parameter value) FROM euroargo WHERE parameter 45
code = 146 GROUP BY station id

5 | SELECT station date FROM euroargo WHERE station date > 2010-10-29 235
20:00:00 AND station date < 2010-10-29 22:30:00

6 | SELECT SUM(parameter value) FROM euroargo WHERE parameter code = 9 42
AND station date > 2010-1-29 20:00:00 AND station date < 2010-12-29 22:30:00

7 | SELECT MAX(parameter value), MIN(parameter value) FROM euroargo WHERE 100
parameter code = 35 AND station date > 2010-1-10 20:00:00 AND station date
< 2011-12-29 22:30:00

8 | SELECT AVG(parameter value) FROM sealevel WHERE parameter code = 82 84

Table 2: Retrieval times for various queries on a subset of Euro-Argo data using the 1st cluster
configuration.

Time (s)
# | Query Jun Full dataset
2015 | Avg | Med o runs
la | SELECT * FROM DataSet 10 - - - _
1b | SELECT * FROM DataSet WHERE measure type = 1 9 249 | 252 10 20

lc | SELECT * FROM DataSet WHERE ((latitude BETWEEN -5.61 AND | 5 | 106 | 107 | 5 | 19
37) AND (longitude BETWEEN 28 AND 41)) OR ((latitude BE-
TWEEN 0 AND 20) AND (longitude BETWEEN 41 AND 45.7))

1d | SELECT * FROM DataSet WHERE measure type = 1 AND ((latitude 5 104 | 106 5 20
BETWEEN -5.61 AND 37) AND (longitude BETWEEN 28 AND 41))
OR ((latitude BETWEEN 0 AND 20) AND (longitude BETWEEN 41
AND 45.7))

2a | marel df = platform.filter(col( “description”).like( “%Marel-lroise%")); 9 333 | 220 | 207 | 20
aa = df join(marel df, df.platform code == marel df.id)

2b | dyfamed df = platform filter(lower(col( “name”)) == “dyfamed”); bb 9 343 | 219 | 178 | 20
= df join(dyfamed df, df.platform code == dyfamed df.id)

2c | provor df = platform filter(col(“name”) == “PROVOR Il Profiling 10 407 347 | 200 20
Float"); cc = df.join(provor df, df.platform code == provor df.id)

2d | pp df = platform.filter(col( “name”).like( “%POURQUOI PAS?%")); dd 5 217 | 130 | 115 | 20
= dfjoin(pp df, df.platform code == pp df.id).filter(col(“measure
type") == 13)

Table 3: Queries used to test Apache Spark on Euro-Argo data using the 2nd cluster configuration.
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Spark application was initiated; the measured time includes only the running time of the application,
with idle time due to YARN scheduling excluded. Table 3 shows that for the June 2015 dataset,
query times on average were close to what is commonly understood as interactive use (less than 7
seconds). In addition, there is some variation in query times for the second query subset. The factor
causing this was not yet detected and calls for enhanced experiment design. Nevertheless, if Apache
Spark is utilized as a part of data subscription service, some variation in processing time is allowed
due to the non-blocking interaction model of the service.

Integration into ENVRIplus

Investigations proceed into Spark within the context of the TC_2 (data subscription) technical case.
Based on the positive results detailed above, there is a strong impetus for further investigation,
including the creation of another microservice.
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4 Roadmap

Task 7.2 is conducted in the context of the Data for Science theme of ENVRIplus, wherein each work
package and task contributes to the overarching goals of the theme. In particular, the execution of
the task, and the contributions of its participants, must be properly aligned with concurrent activities
in other tasks, especially the provisioning of demonstrators and other prototype services.

M6 (Oct 2015) M20 (Dec 2016) M42 (Oct 2018)
D5.1 @ D52 @ ; ® D53
' D5.4 @ ® 055 5
D6t | D62 D6.3
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Figure 21: Timeline of Data for Science theme deliverables.

Figure 21 shows the timeline for deliverables in the theme, and identifies the key interface points with
respect to Task 7.2 specifically:

1.
2.

N o o A

8.

Beginning of Task 7.2.
Delivery of gathered RI requirements.

Delivery of D7.3. By this time, design documents have been delivered for almost all major
theme activities.

Delivery of a model architecture for guiding RI development.
Delivery of semantic linking model and design of provenance subsystem.
Delivery of demonstrator for service deployment on e-infrastructures.

End of Task 7.2 and delivery of D7.4. By this time, demonstrators have been produced for
almost all major theme activities.

End of the ENVRIplus project.

Where possible, the activity in Task 7.2 should be aligned closely with concurrent activities in other
tasks in the project. The activity should take advantage of results produced by the other tasks, and
should also in turn influence their final outputs. In particular:

e The development conducted within Task 7.2 should comply with the reference model based

architecture developed within Work Package 5.

e Where possible, an interface should be established to the interoperable data processing services

provided by Task 7.1.
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End of ENVRIplus project month

A: Optimisation requirements gathering E: Service integration
B: Planning and provisioning for e-infrastructures F: Semantic linking and provenance
C: Deliverable compilation G: End of project dissemination and support

D: Pilot case development
Figure 22: Projected roadmap for Task 7.2 within ENVRIplus.

e The technologies developed within Task 7.2 should be deployable on e-infrastructures as pre-
scribed by Work Package 9.

e Technologies should be made available for specific use-cases identified within the theme to
encourage uptake by research infrastructures.

In Section 1.1, four sub-tasks were explicitly identified as required by the ENVRIplus description of
work. In addition, a number of opportunities have been identified based on the current and projected
progress of the project.

There are 41 person-months associated with Task 7.2, divided among seven partners: UvA (18 PMs),
EISCAT (6 PMs), UniHB (6 PMs), ETHZ (4 PMs), CSC (3 PMs), CINECA (2 PMs) and INGV (2
PMs). The spread of person-months dictates that not all partners can be active within the task
throughout its entire lifespan. In order to best fulfil the requirements of the task, it is necessary to
define several strands of activity that will be activated at different times in the project.

Seven main strands of activity have been identified in Figure 22, one of which has already been
completed:

Optimisation requirements gathering Conducted under the auspices of Task 5.1 “Review of exist-
ing RIs" and reported in Deliverable 5.1 “A consistent characterisation of existing and planned
RIs".

Completed April 2016.

Provisioning e-infrastructure for research applications Focuses on development of a few proto-
type services for planning and provisioning virtual infrastructure resources for distributed ‘time-
critical’ applications as described in Section 3, as well as tools for the deployment of application
components on the provisioned infrastructure.

Completion June 2017.
Deliverable compilation Production of this deliverable and later D7.4.
D7.3 completed December 2016; D7.4 completion October 2018.

Pilot case development Development of pilot cases for applying optimisation technologies to spe-
cific RI requirements, focusing (provisionally and not exclusively) on the EISCAT_3D, EMSO,
Euro-Argo and EPOS infrastructures.

Initial development April 2017-December 2017; final integration June 2018—July 2018
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Service integration Integration of optimisation technologies at VRE, Rl and e-infrastructure levels.
Also includes the design of deployers for selected large-scale data processing technologies on
selected e-infrastructure.

November 2017-June 2018.

Semantic linking and provenance Prototyping of semantic linking framework for guiding optimi-
sation of infrastructure, and integration of provenance recording based on recommendations of
Task 8.3.

May 2018-October 2018

End of project dissemination and support Covers the gap between the end of Task 7.2 and the
end of the project at large. No formal effort is scheduled for activities over this period, however
some dissemination of optimisation technologies can still take place, as well as some support
for their use in order to ensure some uptake that will outlast ENVRIplus itself.

November 2018-April 2019

Because of the interdependence with other tasks, and the standard risks associated with this kind of
development work, the precise timeline for activities may change. Deliverable 5.4 “A development
plan for common operations and cross-cutting services based on a network of data managers and
developers” defines a basic schedule for the prototyping of common services across the entire Data
for Science theme. According to this plan, there are four main phases of development: familiarisation
(M19-M24), development (M19-M24), deployment as prototype (M30-M33) and upgrading mech-
anism (M30-M36). As can be seen, the roadmap described above broadly fits into this framework,
with most development carried out by April 2016 (M26), and the deployment of tools in the context
of specific Rls carried out by December 2017 (M32). Familarisation is treated as an activity concur-
rent to development, and has been on-going since the start of Task 7.2. ‘Upgrading’ can be seen
as subsumed by the service integration strand of activity, which concerns the requirements of actual
deployment onto e-infrastructure. Some additional work is carried out after April 2018 (M36); this
does not adhere to the base plan, but is unavoidable due to the relative late delivery of outputs by
tasks such as Task 5.3 (semantic linking) and 8.3 (provenance), which are considered important to
Task 7.2's overall design.
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5 Summary

The optimisation task (Task 7.2) of ENVRIplus is concerned with services for optimising the use
of e-infrastructure by researchers who wish to make use of the data, tools and services offered by
environmental science research infrastructures. Such optimisation relies on the existence of tools to
customise e-infrastructure deployments, of technologies for large-scale data processing, and of mech-
anisms for translating user-oriented investigation requirements into system-oriented infrastructure
requirements.

This deliverable provides a design vision for optimisation services, and describes how this vision fits
into the greater design for common, interoperable services being promoted by the ENVRIplus ‘Data
for Science’' theme. It also describes some of the current technical developments and investigations
that are being carried out in the context of the task which might contribute to the final output of
the ENVRIplus project. Finally, the deliverable provides a roadmap for the remaining 22 months of
the task, based on the recommendations made by other project deliverables and future milestones for
concurrent activities within the project.

Based on the analysis thus far, a number of technical recommendations can be made in this deliver-
able:

e Technical development within this task should focus on providing a small set of useful microser-
vices for automating certain aspects of e-infrastructure customisation (including provisioning of
virtual resources and automatic deployment of processes) and the configuration of large-scale
data processing tools (such as Apache Storm and Spark) for use in data-driven investigations.
Development should follow the recommendations of Task 5.4 wherever possible.

e These microservices should be made available on key e-infrastructure platforms and presented
to RI communities as tools to be used as they wish. This requires collaboration with partners
engaged in Work Package 9.

e The focus of development should be on providing useful services at the common e-infrastructure
level, rather than only within specific Rls or researchers’ private devices. These services should
be able to interact with Rl-specific services at a programmatic level, and should be invocable
within suitable virtual research environments.

e Further investigation of the translation of application-level requirements into constraints on e-
infrastructure (as a basis for guiding e-infrastructure customisation microservices) is required.
The results of such investigation should be compatible with the semantic linking framework
being developed in Task 5.3.

e The selection of specific development cases (for microservices) should be driven by practical
use-cases provided by engagement with Rl developers involved in ENVRIplus. A number of
promising candidates have already emerged.

While the general use of e-infrastructure is becoming slowly more standardised, there are still signif-
icant differences between different e-infrastructure platforms, and the separation between VRE, e-RI
and e-infrastructure is rarely as distinct as portrayed by abstract architecture in deliverables such
as these. It remains therefore necessary to continue to monitor and study different e-infrastructure
providers (EGI, EUDAT, DIRAC, etc.) and their relationships (for example, DIRAC runs some services
over EGI), in order to determine how best to make optimisation services compatible with them and
how best to present those services to their user communities.

These recommendations should now be fed back into the activities of the task, and where possible
amalgamated with activities in other tasks where partners in Task 7.2 contribute concurrently.
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