THEME 2: DATA FOR SCIENCE

DR. ZHIMING ZHAO
UNIVERSITY OF AMSTERDAM

Supporting environmental research with integrated solutions

- the Earth is our lab

Challenge 1: support system level of sciences

Challenge 2: share solutions to common problems

Challenge 3: Interface virtual research environment(s)

Objectives of the "Data for Science" theme

- 1. to optimize data processing and to develop common models, rules and guidance for research data workflow documentation;
- to facilitate data discovery and use, and to provide integrated end-user information technology to access heterogeneous data sources;
- 3. to facilitate discovery of software services and their composition;
- 4. to make data citable by developing approaches with practical examples, exchange of expertise, and agreements with publishers;
- 5. to characterise users and build a community evolving from current RI communities;
- 6. to characterise ICT resources (including sensors and detectors) to allow virtualisation of the environment (for instance onto Grid- or Cloud-based platforms);
- to facilitate the connection of users, composed software services, appropriate data and necessary resources in order to meet end-user requirements

Direct Benefits to environmental RIs

- 1. A reference model guided design and engineering approach
- 2. A **knowledge base** for reusable solutions to common challenges
- 3. A set of recommended services and a reference architecture
- 4. A set of developed services deployed on e-Infrastructures (e.g. EUDAT or EGI)
- 7. to facilitate the connection of users, composed software services, appropriate data and necessary resources in order to meet end-user requirements

3.

5.

Outline

- Overview of the data for science theme
- Activities and achievements
- Summary

Outline

COverview of the data for science theme

- Activities and achievements
- **C**Summary

Adopted approach: identify common challenges

Adopted approach: RI and e-Infrastructures

Adopted approach: work package and tasks

Adopted approach: agile task forces

Use Cases: science, test & implementation cases

#	Use Case	Agile Group Leaders
SC_3	How do mosquito born deseases emerge and what are trends?	Matthias O. (UGOT)
TC_2	Euro-ArgoData subscription service	Thierry (IFREMER) & Yin (EGI)
TC_4	Sensor registry	Thomas B. (IFREMER)
TC_16	Description of a National Marine Biodiversity Data Archive Centre	Dan L.(MBA) & Abraham, Alex (CU)
IC_1	Dynamic data citation, identification & citation	Alex V. (LU)
IC_2	Provenance Implementation case	Barbara Magagna (EAA)
IC_3	User support to re-process data using their own algorithms (EISCAT 3D)	Ingemar H. (EISCAT) & Leonardo C.(CNR)
IC 8	Cataloguing, curation, provenance across RIs WP8	Keith J. (NERC)
IC_9	Provenance - use of DOI for tracing of data re-use.	Markus F. (NILU)
IC_10	Domain extension of existing thesauri	Barbara M. (EAA)
- IC 11	Semantic Linking Framework	Zhiming, Z., Paul M. (UvA) Barbara M. (EAA)
IC_12	Implementation of ENVRI(plus) RM for EUFAR and LTER	Barbara M. (EAA)
IC_13	The eddy covariance fluxes of GHGs	Dario P., Domenico V. (UNITUS)
_ IC_14	SOS&SSN ontology based data acquisition & NRT data quality checking services	Robert H., Markus S. (UniHB)

Diversity: across Rls, WPs & Partners

US#	Theme2 WPs	RIs	Partners
SC_3	WP7, WP8, WP9	LifeWatch-SW, EGI	UGOT, EGI, CNR, CU, EPOS, PANGEA
TC_2	WP9	EuroArgo, EMSO, ICOS-SOCAT, EGI, EUDAT	IFREMER, Uni of Bremen, EGI, Uni of Bergan, CNR, EUDAT, Uni Westminster
TC_4	WP8, WP5, WP9	EMSO, EPOS, EuroArgo, Marine Gliders, ICOS, Drones, EGI	IFREMER, CU, Plocan, NERC/BODC, LOCEAN, RESIF, IPSL
		EMSO, SeadataNet, JERICO, EMBRC, EMODNET,	
TC_16	WP5, WP9	COPERNICUS, EGI	CU, MBA, EGI
IC_1	WP6	ICOS, ANAEE, ACTRIS, LTER, IAGOS	ICOS, ANAEE, ACTRIS, LTER, IAGOS, PANGAEA
IC_2	WP5, WP6, WP8	LTER, ICOS, EUDAT	EAA, EUDAT
IC 3	WP7, WP9	EISCAT-3D, EGI	EISCAT, CNR, EGI
IC_8	WP8	EMSO, EuroArgo, EPOS, ICOS, LTER, EUDAT	IFREMER, ANAEE, EUDAT, IAGOS, ICOS, LTER
IC_10	WP5, WP8	LTER, EMBEC, LifeWatch-ITA	EAA, LifeWatch-ITA
IC_11	WP5	LTER, ICOS	UvA, EAA
IC_12	WP5	EUFAR, LTER	EAA, DLR, Umweltbundesamt
IC_13	WP7, WP9	ICOS, LTER, ANAEE	UNITUS, CNR, LU
IC_14	WP4, WP9	EMSO, FIXO3, ANAEE, EGI	UniHB, ANAEE, EGI

H2020 Project

Outline

- ■Overview of the data for science theme
- **CActivities and achievements**
- Summary

WP 5: Reference model guided RI design

WP 5: Objectives

- 1. Update the requirement analysis and technology review performed in the ENVRI project to reflect the progress many RIs have made in their architecture design and system implementation.
- 2. To promote interoperability across RIs by providing a novel reference model (RM) that should be developed based on the existing ENVRI RM, with consideration of the latest development insights from successful RIs.
- 3. To provide an ontological framework based on the ENVRI RM to describe the requirements and system architecture of RIs, and to link these descriptions with the technologies provided by data and computing infrastructures.
- 4. To provide a design and implementation plan and a reference architecture for an abstract yet customisable research environment by engaging RI developers from different domains, in particular via work packages 6–9, and using the updated ENVRI RM.

WP 5: Deliverable and deviations

No.	Title	Deadline	Status
D5.1	A consistent characterisation of existing and planned RIs	M12	Submitted in time
D5.2	A definition of ENVRIPLUS Reference Model	M18	Delayed to M21
D5.4	A development plan for common operations and cross-cutting services	M18	Delayed to M21
D5.5	A model architecture for new RIs to adopt and to act as a guide for existing RIs in their development	M24	Submitted in time
D5.3	A definition of the ENVRIPLUS Semantic linking framework at conceptual and formal levels	M36	On track

No.	Title	Deadline	Status
MS19	Reference model defined	M18	Online available in time, but D5.2 delayed
MS20	A development plan for common operations and cross-cutting services	M18	Delayed to M21, due to the delay of RM

WP 5: Overall Status

1. Successes

- a. Reference model, v2.1: envri.eu/rm
- b. OIL-e: v2.1 (http://www.oil-e.net/ontology/rm-archetypes.owl)
- c. Mapping between OIL-e and CERIF
- d. RM has been applied by ICOS, EISCAT-3D, EUFAR, LTER etc. (Highlight: reference model guided design)
- e. Publications and other achievements
 - Organized 1st IT4RIs, in eScience 2015: https://staff.fnwi.uva.nl/z.zhao/workshop/it4ris/
 - Two book chapters
 - 4 workshop paper in e-Science 15, AINA 16 and RTSS 16
 - Talks and special session in DI4R 16
 - Article in newsletter #2, blog article, and also T15.1 training materials outputs.

2. Issues and corrective actions

- a. Practical guidelines and tools of RM will be highlighted in the next phase
- 3. Plans for the next period

H2020 Project

- a. Proceed with engineering/technology view of RM
- b. Build tools for RM guided design, semantic linking and engineering

WP 6: Inter RI Data Identification and Citation Services

WP 6: Objectives

■To improve the efficiency of data identification and citation by providing convenient, effective and interoperable identifier management and citation services.

WP 6: Deliverable and deviation

No.	Title	Deadline	Status
D6.1	A system design for data identifier and citation services for environmental RIs projects to prepare an ENVRIPLUS strategy to negotiate with external organisations	M20	Delayed to M21
D6.2	A report on negotiations with publishers, providers of existing data citation systems and other scientific organisations on implementing a global data citation system.	<i>M</i> 36	On track
D6.3	Use-case study reports: (a) an online, standards based publication mechanism for marine biological data; (b) workflow and guidance for tested citation tracking models	M46	On track

WP 6: Overall Status

1. Success

a. Publications:

- Margareta H., et al., (2016). Near Real Time Data Processing In ICOS RI. 2nd IT4RIs, in RTSS, Zenodo. http://doi.org/10.5281/zenodo.204817
- Klump, J., et al.,(2016), DOI for geoscience data how early practices shape present perceptions, Earth Science Informatics 9 (1)
- Klump, J.et al., (2016). 20 Years of persistent identifiers Which systems are here to stay? Geophysical Research Abstracts

b. Software:

The ICOS meta data service software repository(https://github.com/ICOS-Carbon-Portal/meta)

2. Issues and corrective actions

- Alignment with the reference architecture will be improved
- 3. Plans for the next period

H2020 Project

- a. Further prototype identification and citation services
- b. Negotiation with publishers
- c. Use cases

WP 7: Data Processing and Analysis

WP 7: Objectives

- ■Improving the efficiency of data processing by providing system-level optimisation to select, provision and use interoperable infrastructure services for data integration, processing and storage.
- ■Improving the performance of the research infrastructures by providing system-level optimisation among data, processing, and underlying services, including their digital networks.

WP 7: Deliverable and deviations

No.	Title	Deadline	Status
D7.1	Interoperable data processing for environmental RI projects: system design	M20	Delayed to M21
D7.3	Performance optimisation for environmental RI projects: system design	M20	Delayed to M21
D7.2	Interoperable data processing for environmental RI projects: system design: prototype	M42	On track
D7.3	Performance optimisation for environmental RI projects: prototype	M42	On track

No.	Title	Deadline	Status
MS25	System design for data processing and optimization services	M20	Delayed to M21, when D7.1 and D7.3 were submitted

WP 7: Overall Status

1. Success

a. Publications

- M. Assante, et al. (2016) Virtual Research Environments as-a-Service by gCube. 8th IWSG
- Wang, J., et al., (2017) Planning Virtual Infrastructures for Time Critical Applications, FGCS
- Zhao, Z., et al. (2016) Time critical requirements and technical considerations, IT4RIs, RTSS 16
- Zhou, H., et al.(2016) Inter-locale Virtual Cloud For Nearly Real-time Big Data Applications, IT4RIs, RTSS
- Zhou, H., et al.(2016) Fast Resource Co-provisioning for Time Critical Application IEEE CLOUD
- Zhou, H., et al.(2016) Fast and Dynamic Resource Provisioning for Cloud Applications, ISORC
- Mork, R., et al. (2015) Contemporary Challenges for Data-intensive Scientific Workflow Management Systems, WORKS IEEE Supercomputing 2015.
- b. Organized 2nd IT4RIs in RTSS 2016: on nearly real time data processing
- c. Use cases
- SC_3, TC_2, TC_3 and TC_13 (Highlight: data subscription service)
- c. Software services:
- · Data Miner and
- Infrastructure optimizer
- 2. Issues and corrective actions
 - a. Engage more RIs in the development loop
- 3. Plan for next step
 - a. Refine software services based on existing use cases and new requirements
 - b. Apply the services to new use cases

WP 8: Data Curation and Cataloguing

WP 8: Objectives

- ■Improving the efficiency and quality of user experience for data curation by providing automatic and self-adaptable curation and semantic annotation services,
- ■Improving catalogue interoperability among different Research Infrastructures,
- ■Improving the efficiency of data provenance and tracing by providing convenient, effective and interoperable standards-based data provenance services.

WP 8: Deliverable and deviation

No.	Title	Deadline	Status
D8.1	Data curation in system level of sciences: system design	M18	Delayed to M21
D8.3	Interoperable cataloguing and harmonization: system design	M18	Delayed to M21
D8.2	Data curation in system level of sciences: prototype and deployment	M42	On track
D8.4	Interoperable cataloguing and harmonization: prototype and deployment	M42	On track
D8.5	Data provenance and tracing for Environmental sciences: system design	M36	On track
D8.6	Data provenance and tracing for Environmental sciences: prototype and deployment	M42	On track

No.	Title	Deadline	Status
MS22	System design for data curation and cataloguing	M18	Delayed to M21, when D8.1 and D8.3 were submitted

WP 8: Overall Status

1. Achievements

a. Publications:

- Zhao, Z., et al., (2015) Reference Model Guided System Design and Implementation for Interoperable Environmental Research Infrastructures. IT4RIs IEEE e-Science
- Martin, P., et al., (2015) Open Information Linking for Environmental Research Infrastructures. IT4RIs, IEEE e-Science
- Martin, P., et al., (2016) Research Data Infrastructures for Environmental Societal Challenges, book Chapter

b. Use cases:

TC_4, IC_2 and IC_8 (Highlight: flagship catalogue)

2. Issues and corrective actions

a. Metadata mapping will be highlighted in the next phase jointly with T5.3

3. Plans for the next period

- a. Start provenance service
- b. Continue with the service prototype of catalogue and curation
- c. More use cases

WP 9: Service Validation And Deployment

WP 9: Objectives

- Improve the usability of developed services in their intended environment. The results will be demonstrated, validated and refined via use cases.
- Improve the deployment of the developed results. Services and environment will be deployed in the research infrastructure, possibly via resources of the e-Infrastructure and data infrastructures.

WP 9: Deliverables

No.	Title	Deadline	Status
D9.1	Service deployment in computing and internal e- Infrastructures Version1	M28	On track
D9.2	Serving key data service stakeholders and policy initiatives version 1	M30	On track
D9.3	Service deployment in computing and internal e- Infrastructures Version2	M40	On track
D9.4	Serving key data service stakeholders and policy initiatives version 2	M46	On track

No.	Title	Deadline	Status
MS29	Service deployment in computing and internal e- Infrastructures	M28	On track

WP 9: Overall Status

1. Success

- a. Use cases
 - E-Infrastructure support for 13 use case agile teams
- b. Deployment guidelines
 - https://confluence.egi.eu/display/EC/Guideline+for+Service+Deployment
- c. Service portfolio
 - https://confluence.egi.eu/display/EC/ENVRIplus+Service+Portfolios
- 2. Issues and corrective actions
 - a. Training and support for e-infrastructure services will be enhanced
- 3. Plans for the next period
 - a. Use case support, refine deployment guidelines and service portfolio
 - b. Enhance the connection among communities of developers and e-Infrastructures

Outline

- Overview of the data for science theme
- Activities and achievements
- **CSummary**

SUMMARY 1: ENVRI RM and development plan

SUMMARY 2: Reference model guided design

D5.1: Requirements, technology review, gap analysis

Envri.eu/rm D5.2 RM

Use cases

D6.1: Identification and citation service architecture and recommendations

D7.1: Data processing service architecture and recommendations

D7.3: Optimization service architecture and recommendations

D8.1: Curation service architecture and recommendations

D8.3: Cataloguing service architecture and recommendations

D5.4 Development plan

Input from agile use case teams

SUMMARY 3: Reference architecture

D5.1: Requirements, technology review, gap analysis

D6.1: identification and citation service architecture and recommendations

D7.1: Data processing service architecture and recommendations

D7.3: Optimization service architecture and recommendations

D8.1: Curation service architecture and recommendations

D8.3: Cataloguing service architecture and recommendations

SUMMARY 4: RI engagement

SUMMARY 5: meet WP 5 objectives

Objectives

Update the requirements analysis and technology review

2. To promote interoperability across
Rls by providing a novel reference model (RM)

3. To provide an ontological framework

4. To provide a design and implementation plan and a reference

D5.4 D5.5

SUMMARY 6: next steps in WP 5

Objectives

Update the requirements analysis and technology review

Next step

1. Refinement and revisiting in the context of WP6-9

2. To promote interoperability across RIs by providing a novel reference model (RM)

 Continue with engineering/technolo gy viewpoints

3. To provide an ontological framework

3. Annotation, search and other tools

4. To provide a design and implementation plan and a reference

D5.4 D5.5

- \longleftrightarrow
 - **4. Refinement** in the context of WP6-8

SUMMARY 7: meet WP 6-8 objectives

D6.1

D7.1

D7.3

D8.1

D8.3

Objectives

- (WP6) to improve the efficiency of data identification and citation
- (WP7 -1) to improve the efficiency of data processing
- (WP7 -2) to improve the performance of the research infrastructures
- (WP8 -1) to improve the efficiency and quality of user experience for data curation
- 5. (WP8 -2) to improve catalogue interoperability among different research infrastructures
- (WP8 -3) to improve the efficiency of data provenance and tracing

SUMMARY 8: next steps in WP 6-8

Objectives

- 1. (WP6) to improve the efficiency of data identification and citation
- (WP7 -1) to improve the efficiency of data processing
- (WP7 -2) to improve the performance of the research infrastructures
- (WP8 -1) to improve the efficiency and quality of user experience for data curation
- 5. (WP8 -2) to improve catalogue interoperability among different research infrastructures
- 6. (WP8 -3) to improve the efficiency of data provenance and tracing

Next step

- 1. Refine services based on roadmap and recommended architecture (defined in D5.3, D5.4)
- 2. Validate the prototypes in more use cases
- Start provenance tasks

D6.1

D7.1

D7.3

D8.1

D8.3

SUMMARY 9: meet WP 9 objectives

gCube / D4Science

1. Improve the usability of developed services in their intended environment.

	WP7, WP8, WP9	LifeWatch-SW, EGI EuroArgo, EMSO, ICOS-SOCAT, EGI, EUDAT	UGOT, EGI, CNR, CU, EPOS, PANGEA IFREMER, Uni of Bremen, EGI, Uni of Bergan, CNR, EUDAT, Uni Westminster
	WP8, WP5, WP9	EMSO, EPOS, EuroArgo, Marine Gliders, ICOS, Drones, EGI	IFREMER, CU, Plocan, NERC/BODC, LOCEAN, RESIF, IPSL
TC_16	WP5, WP9	EMSO, SeadataNet, JERICO, EMBRC, EMODNET, COPERNICUS, EGI	CU, MBA, EGI
C_1	WP6	ICOS, ANAEE, ACTRIS, LTER, IAGOS	ICOS, ANAEE, ACTRIS, LTER, IAGOS, PANGAEA
C_2	WP5, WP6, WP8	LTER, ICOS, EUDAT	EAA, EUDAT
СЗ	WP7, WP9	EISCAT-3D. EGI	EISCAT, CNR, EGI
C_8	WP8	EMSO, EuroArgo, EPOS, ICOS, LTER, EUDAT	IFREMER, ANAEE, EUDAT, IAGOS, ICOS LTER
C_10	WP5, WP8	LTER, EMBEC, LifeWatch-ITA	EAA
C_11	WP5	LTER, ICOS	UvA, EAA
C_12	WP5	EUFAR, LTER	EAA, DLR, Umweltbundesamt
C_13	WP7, WP9	ICOS, LTER, ANAEE	UNITUS, CNR, LU
C_14	WP4, WP9	EMSO, FIXO3, ANAEE, EGI	UniHB, ANAEE, EGI

Improve the deployment of the developed results. Page S. Cer. We William Company for the Compute portfolios

Created by Yin Chen, last modified on Apr 20, 2017

The ENVRIplus Service portfolio contains the services the ENVRIplus offers to the ENVRI community and beyond.

New Service

To add a new service, click the button below.

Add a new service.

Service name

Service area

Service area

Service area

Service area

Service phase

Dynamic Read-time
Infrastructure planning and
provisioning for time-critical applications.

(ORIP)

UVA
(Interventy of Amsterdam)

Deployment guidelines &

SUMMARY 10: next steps in WP 9

IC 14 WP4, WP9

1. Improve the usability of developed services in their intended environment.

Improve the deployment of the developed results.

UniHB ANAFE EGI

Deployment guidelines & Service portfolio

EMSO FIXO3 ANAFE EGI

Next steps

- More demonstrators of use cases
- 2. More concrete services in portfolio
- 3. More deploymentson e-infrastructures

HIGHLIGHTS IN THEME 2

Supporting environmental research with integrated solutions

- the Earth is our lab

Highlights

Highlights

THEME 2 HIGHLIGHT 1 Reference model guided approach

FROM WP5

T5.2, Cardiff University (Alex Hardisty)

T5.3, University of Amsterdam (Paul Martin, Zhiming Zhao)

Abraham Nieva, Malcolm Atkinson, Aurora Constantin, Barbara Magagna, Markus Stocker

H2020 Project

REFERENCE MODEL GUIDED APPROACH

AIDS ENGINEERING DESIGN

- The ENVRI Reference Model (RM), started in the former ENVRI project, is an ongoing development of ENVRIplus that can be applied to the informatics engineering design challenges faced by RIs.
- ■Like the design of buildings, the RM decomposes the modelling procedure for a complex distributed system into different viewpoints.
- The RM promotes a standard vocabulary for describing environmental research ENV infrastructures and for modelling their components and architecture from the scientific, informational, computational, engineering and technology viewpoints.
- Current version: V2.1 http://envri.eu/rm

WHO IS USING THE ENVRI RM? PRESENTLY APPLIED TO DESIGN WORK

By RIs, assisting research infrastructure engineers with systems design:

DASSH—archive for marine species and habitats data; deliver metadata and access capabilities into partner infrastructures (MEDIN, NBN, EMBRC, etc.).

EISCAT-3D—designing and investigating big data strategies via outsourcing to e-Infrastructure providers such as EGI.eu and EUDAT.

EMSO—Data Management Architecture Design; EMSOdev D6.2, 08/16.

EUFAR—identifying/understanding missing business processes.

ICOS—consolidation of thinking regarding different design sub-groups.

LTER, Euro-Argo, SeaDataCloud and EPOS—recently started.

- *Having a "personal trainer" helped a lot to start working with the RM. Gaps within EUFAR's working procedures could already be identified.
- *EISCAT is developing a new portal within EGI and EUDAT projects. The RM helps to define the structure and content of the new data model the portal is dependent on.
- *The RM represents an incredibly useful tool to help crystallise one's thinking, once an initial familiarity has been achieved.

RI DESIGN EXAMPLE

EUROPEAN FACILITY FOR AIRBORNE RESEARCH

H2020 Project

- ■EUFAR brings together operators of instrumented research aircraft and remote-sensing instruments with the scientific user community.
- ■Using RM to model their processes:

 - Process of managing a complete campaign to collect data—from initial contact with the aircraft operator, through flight planning and action, instrument installation and test, data acquisition and checking/logging to final reporting on success and costs of the campaign.

INTEGRATION EXAMPLE ORCID PERSONAL PERSISTENT IDENTIFIERS

https://orcid.org

3,340,877 ORCID iDs and counting. See more...

IT Sort

CORCID integration in RIs enables automated linking of submitted and curated

datasets to contributors' ORCID identifiers.

As demonstrated by Argo, RIs can credit contributors by automatically updating their ORCID record on their behalf whenever new data is published.

The ENVRI Reference Model guides ORCID integration in RIs by:

specifying ORCID's role in relation to RIs.

suggesting computational components required for RIs to integrate with ORCID.

Showing that the ORCID iD is an information object manipulated by RIs.

WHY IS THE RM IMPORTANT? FOR KNOWLEDGE SHARING

- **Discover** reusable components among research infrastructures.
- **Design** new research infrastructures.
- **COptimise** the evolutionary path.

Semantic description and tools (T5.3)

New RIs

RI: how did other RIs implement my missing functionality?

RI: how should I upgrade my services?

New RI: What are the best practices for meeting my requirements?

WHY IS THE RM IMPORTANT? FOR FRAMING LONG-TERM STRATEGIC ICT

- ■Those responsible for RIs should know what the important RI
 elements are and where and what are the interfaces to them—so that
 interoperability can be achieved, and so that third-party
 components/services can be widely exploited.
 - ■e.g., in the cataloguing highlight that you will hear about next.
- ■The goal is not to have all RI functions implemented in the same or similar ways (although there are 'critical mass' benefits arising from that as well) but to standardise external and inter-RI interfaces to simplify the task of using or building tools for multiple RIs.
- ■RM provides the framework within which medium to long-term ICT options can be considered and proposed, for example by a strategic "ENV RI Information Systems Strategy and Engineering Group".

THEME 2 HIGHLIGHT 2 Flagship product catalogue

FROM WP 8

Thomas Loubrieu, Keith Jeffery

Euro-ARGO, SeaDataNet (IFREMER), EPOS (NERC, INGV, GFZ), ICOS (LU), IAGOS (CNRS), LTER (UBA-GmbH), ANAEE (INRA), EMBRC (MBA)

FLAGSHIP PRODUCT CATALOGUE

Any resources provided by an RI that are open to users and should be discoverable, easy understandable, advertised... think of it as a marketing tool for RIs.

- Global Ocean physics properties from 0 to 2000 meters deep by Euro-ARGO profiling floats (ARGO).
- Atmosphere Carbon concentrations measured by IAGOS planes.
- €...

- Ecological Research Station in Tropical forest, French Guyana (ANAEE).
- Marine observatory of mid-ocean ridge processes, from the subsea floor to the water column (EMSO).
- €...
- Not always trivial to synthesize: some RIs provide a collection of heterogeneous datasets.

FLAGSHIP PRODUCT CATALOGUE

- The main challenge: get sustainable involvement and support from RIs for the catalogue activity at transdisciplinary level.
- Strategy:
 - Benefit from the transdisciplinary nature of ENVRIplus RIs.
 - Get RIs involved by offering them advantage by advertising their outcomes.
 - Focus on an immediate, low risk development.
- Use Case: a flagship data and acquisition services catalogue to expose products of RI beyond their traditional communities:
 - The products from different RIs should be presented as homogeneously, intuitively and with good looking descriptions.
 - The products from different RIs will be balanced.
- Success will be measured by:

H2020 Project

- How users can actually retrieve resources in the catalogue, of course, but also...
- The satisfaction of RIs regarding how they are represented in the catalogue.

THE DEMONSTRATOR WILL HAVE:

- **Products from:**
 - ■Euro-ARGO, SeaDataNet (IFREMER)
 - ■EPOS (NERC, INGV, GFZ)
 - **€ICOS (LU)**
 - **CIAGOS (CNRS)**
 - **■LTER (UBA-GmbH)**
 - **CANAEE** (INRA)
 - **■**EMBRC (MBA)

B2FIND

Show them in EUDAT/B2FIND infrastructure implemented by DKRZ with CKAN software (up and running system, flexible, open-source and popular, quick win, and an RI-neutral service).

ARCHITECTURE USERS Flagship product RI components Catalogue (EUDAT) V Service Objects B2FIND export me query data catalogue quary resource pdate catalogues CV Service Objects ckan ISO19115-2 DC, DCAT https://ckan.org/ CV Service Objects Conceptual Canonical Metadata Scheme CV Service Objects Objects which provide programmatic access to internal and external systems a ICOS ANAEE CV Component Objects Objects which provide access to back end objects/systems H2020 Project Project Number: 654182

ACHIEVEMENTS

ACHIEVEMENTS

OUTCOMES

- ■A technical platform with a collection of RI metadata in B2FIND, where both data managers / IT people in RI and ITC work together to share descriptions of data and acquisition services.
- Fundamental questions on how the RI products should be made visible at a trandisciplinary level are raised:
 - Which user questions the RI answers?
 - How to preserve visibility of PIs?

NEXT STEPS

■ EUDAT/B2FIND actions:

- Automate metadata collection from RI (harvesting in OAI-PMH and CSW protocols).
- add attributes: quicklooks, related documents (bibliography, user manual, etc.).
- Refine metadata profile mapping for all demonstration RIs:
 - Syntax, semantics: detailed format, agreement on shared keywords (e.g. RI labels and data service vs acquisition service).
 - Measure metadata quality.
 - Refine metadata granularity for all demonstration RIs (balance outcomes of each).
- **CLink** data services in flagship product catalogue with datasets.

THEME 2 HIGHLIGHT 3 Data subscription service

FROM WP **7 & 9**Thierry Carval, Baptiste Grenier, Jani Heikkinen, Glenn Judeau, Spiros Koulouzis

Broadcast Argo RI observations via EU E-infrastructures

- RIs products such as the Argo dataset are registered in the ENVRIPLUS catalogue.
- In the catalogue, an inter-thematic data subscription service derived from RIs' data is proposed, starting with Argo dataset, then with additional RIs (such as EMSO and ICOS).
- The data subscription use case is implemented under the guidance of the ENVRI Reference Model:
 - Data curation: managing continuous updates
 - Data citation scheme
 - Accounting of data distribution

Broadcast Argo observations over EU E-infrastructures

A data subscription use case

To provide regularly specific data to scientists

The user provides his criteria:

- time, spatial area, parameters, data types, update period for delivery (e.g. daily, monthly, etc.).
- Data are extracted from E-infrastructures and formatted on the cloud.
- The user's cloud account is updated regularly with new data.
- An accounting of data delivery is performed:
 - A citation scheme is attached to the delivered data (ID):
 - bibliographic surveys can track the use of these data in publications
 - reproducibility is possible
 - A user's identification scheme could be implemented (e.g. Marine-ID, Shibboleth, OpenID, etc.).

USE CASE: DATA SUBSCRIPTION

Generalization with other Research Infrastructures

Feeds VREs for trans-disciplinary science: ocean, space, atmosphere, earth, etc.

- Environmental monitoring and forecasting: EU ocean-atmosphere models
- Calibration and validation with in-situ data: SMOS, Sentinel satellite missions, etc.
- Efficient workplace for advanced services

DEMO

H2020 Project

END OF THE THEME 2 REPORT

H2020 Project

THE FOLLOWING SLIDES ARE BACKUP

WP 5: REFERENCE MODEL GUIDED RI DESIGN

WP LEADER: DR. PAOLA GROSSO (UVA)

DURATION: M1-M36

PARTNERS: CU, CNR_{SIOS}, CNRS _{IAGOS, IS-ENES, FIXOS}, EAA _{LTER}, EGI.EU,

EISCAT, EMBLFI IXIFR, ETHZ EPOS, EURO-ARGO,

FZJ_{IAGOS}, IFREMER_{JERICO}, INGV_{EPOS}, INRA_{ANAEE}, LU_{ICOS},

MBA _{EMBRC}, NERC_{EPOS}, UNIHB _{EMSO}, USTAN _{EMBRC},

UCPH_{INTERACT}, UEDIN, UHEL_{ICOS}, UVA,

EFFORT: 187PM

Supporting environmental research with integrated solutions

- the Earth is our lab

Task 5.1: Requirement Analysis, Technology review and Gap analysis

- **€ Leader: UEDIN** (prof. dr. M. Atkinson)
- **■** Duration: M1- M12
- Achievements
 - **▼D5.1** of requirement analysis, technology review and gap analysis.
 - An executive summary of the report has been composed (led by Alex V.)
 - the need to achieve data harmonisation,
 - the need to learn from one another and pool efforts
 - sustainably delivering data services immediately to meet current RI priorities while taking into account longer-term issues and technology trends.

Task 5.2: Reference model for ENVRIPLUS

CLeader: CU

(mr. A. Hardisty & dr. A. Nieva)

■Duration: M7-M30

- Refine the ENVRI RM based on updated requirements
- **EV** and TV design in progress
- Key achievements
 - ■M15: ENVRI RM V2
 - **■M18: ENVRI RM V2.1**
 - **■**D 5.2
 - Aligned D6.1, 7.1, 7.3, 8.1 and 8.3
 - Oriving specification of common and cross-cutting services in D5.5 (Ident & Cit, Cataloguing, etc.)

Task 5.3: Semantic description and linking

€Leader: UvA (dr. P. Martin and dr. Z. Zhao)

■ Duration: M7-M36

- Open information linking for environmental science (OIL-e)
- Align OIL-e with ENVRI RM
- Mapping OIL-e with other metadata models, e.g., CERIF
- Describe more RIs via f2f meetings

Key achievements:

Mapped OIL-e (semantic linking ontology) with CERIF. Agile team IC_11

Task 5.4: Interoperation based architecture

WP 6: INTER RI DATA **IDENTIFICATION AND CITATION SERVICES**

WP LEADER: ALEX VERMEULEN (LU)

DURATION: M1-M48

PARTNERS: CINECA_{EUDAT}, CNR_{SIOS}, CNRS_{IS-ENES}, DKRZ_{IS-ENES},

EAA LTER. EISCAT, INRA ANAEE, LUICOS, MBA EMBRC,

IFREMER_{SEADATANET}, NILU_{ACTRIS}, UHB_{EMSO},

EFFORT: 65PM

Supporting environmental research with integrated solutions

Task 6.1: Identification and Citation

12020 Project

€ Leader: LU

(dr. A. Vermeulen and dr. M. Hellström)

■ Duration: M1-M48

- Data uptake tool for ICOS: data PID'ing, store at trusted repository, enrich metadata in versionable meta data store, dynamic landing pages
- Libraries, publishers on data citation systems
- Publishing subsets, collections with adequate citation based on PID'ed DO
- Progress in ICOS data lifecycle & GBIF marine biological data
- Participation and contributing to relevant RDA working groups and activities:
 - Data Citation

Data Type Registries
Research Data Collections

WP 7: DATA PROCESSING AND **ANALYSIS**

WP LEADER: DR. LEONARDO CANDELA (CNR)

DURATION: M7-M42

PARTNERS: CINECA_{EUDAT}, CNR, CSC_{EUDAT}, DKRZ_{IS-ENES}, EISCAT,

ETHZ_{FPOS}, EURO-ARGO, INGV _{FPOS}, UNIHB_{FMSO},

UNITUS_{ICOS}, UVA,

92PM EFFORT:

Supporting environmental research with integrated solutions

Task 7.1 Data processing

- € Leader: CNR (dr. L. Candela)
- Duration: M7-M42
 - Investigated the feasibility of using D4Science in a number of agile case studies: SC_3, TC_2, IC_3, IC_13
 - Re-engineered the entire system and released DataMiner framework
 - Performance enhancement
 - Reinforced algorithm importing facility (input typologies enlarged)
- Key achievements:
 - **€**D7.1
 - Publications
 - Software deployment
 - Use case prototype

Task 7.2 Performance optimization

deployment

H2020 Project

- € Leader: UvA (dr. P. Martin and dr. Z. Zhao)
- **■** Duration: M7-M42
 - Investigated the feasibility of using D4Science in a number of agile case studies: SC_3, TC_2, IC_3, IC_13
 - QoS based virtual infrastructure planning and provisioning (experiments on EGI FedCloud)
 - RI provisioning of assets: datasets but also software, access to resources, persons...
 - End-user discovery/contextualization/action: workflow construction including datasets and software and access to resources
- Key achievements:
 - Software prototype

Use case Publications

WP 8: DATA CURATION AND CATALOGUING

WP LEADER: PROF. DR. KEITH JEFFERY (NERC)

DURATION: M7-M42

PARTNERS: CEA_{ICOS}, CINECA_{EUDAT}, CNR_{EXP}, SIOS, CNRS_{IAGOS},

CSC_{FUDAT}, DKRZ_{EPOS}, EAA_{LTER}, EISCAT, IFREMER

SEADATANET, EUROFLEET, INGV_{EPOS, EMSO}, INRA_{ANAEE}, LU_{IOCS},

MBA_{EMBRC}, **NERC**_{EPOS}, NILU_{ACTRIS}, USTAN_{EMBRC}, UVA

EFFORT: 159PM

Supporting environmental research with integrated solutions

- the Earth is our lab

Task 8.1: Curation

Case

H2020 Proiect

- **€**NERC (prof. dr. K. Jeffery)
- **C**Duration: M7-M42
 - Process of curation related to data collection and quality control (includes annotation)
 - Discovery, contextualization, action using curated datasets
 - Data Management Plan (DCC)
 - ■Data Lifecycle (DCC)
 - OAIS (architectural recommendation – very flexible)
- ■Key achievements:
 - **€**D8.1

Service prototypeus deployment VR

Task 8.2: Cataloguing

€Leader: IFREMER

(dr. T. Loubrieu)

Duration: M7-M42

- Initial agreement on: 1) A superset of attributes to describe the products (RDA, metadata), and 2) A set of support standards to describe products: ISO 19119, 19139, DC and DCAT.
- Collection of inputs from the RI catalogues
- ■Integration in EUDAT/B2FIND catalogue system.
- CKAN and CERIF are recommended
- - **€**D8.3

Prototype Flagship catalogue

Task 8.3: provenance

■Leader: EAA (dr. B. Magagna)

CDuration: M25-M42

■ Join the requirement analysis (5.1) and RM review (5.2)

Contributed to the **D5.1** and **D5.2**

■Key achievements:

An internal discussion wiki

WP 9: SERVICE VALIDATION AND DEPLOYMENT

WP LEADER: DR. YANNICK LEGRE (EGI.EU)

DURATION: M13-M48

PARTNERS: CEA_{ICOS}, CINECA_{EUDAT}, CNR_{ACTRIS}, CNRS_{IAGOS}, CSC_{EUDAT},

EAA_{LTER}, **EGI.EU**, EISCAT, EMSC_{EPOS}, ETHZ_{EPOS},

EURO-ARGO, FZJ_{IAGOS}, IFREMER_{JERICO}, INGV_{EPOS}, EMSO,

INRA_{ANAEE}, LU_{IOCS}, NERC _{EPOS}, NILU_{ACTRIS}, UCPH_{INTERACT},

UHELICOS, UITESONET-VI, UNIHBEMSO, UNITUSICOS,

USTAN_{EMBRC},

EFFORT: 118PM

Supporting environmental research with integrated solutions

- the Earth is our lab

Task 9.1: Validation and integration

etc.

Test bed for agile case teams

Deployment guidelines

- **€**Leader: EGl.eu
 - (Y. Legre & Y. Chen)
- **■** Duration: M13-M48
 - Case study teams
 - ■Deployment technologies in SC_3 (Mosquito), TC_2 (Euro-Argo), TC_13 (ICOS), IC_3(EISCAT-3D)
 - Reviewed a number of technologies
- Key achievements:
 - Deployment guideline
 - Initial service portfolio of theme2

M24

Task 9.2: From research to operation

■Leader: LU (A. Vermeulen)

CDuration: M13-M48

- ■Track the usability of the results of 9.1, promote the integration between RI and initiatives: COPERNICUS, EEA, etc.
- Review the designed mechanisms with the stakeholder together
- Provide operation support for RIs
- **■Key achievements:**
 - Depend on 9.1 and other tasks,
 - More to be expected in coming phases

